M. Abel, L. Frommhold, Xiaoping Li, Katherine L.C. Hunt
{"title":"稠密氢氦、氘氦和氚氦混合气体碰撞诱导吸收光谱的比较","authors":"M. Abel, L. Frommhold, Xiaoping Li, Katherine L.C. Hunt","doi":"10.1155/2011/470530","DOIUrl":null,"url":null,"abstract":"We have recently determined the induced dipole surface (IDS) and potential energy surface (PES) of collisional H2-He complexes. We have used these surfaces to compute the binary collision-induced absorption spectra of H2 molecules interacting with He atoms and of D2 molecules interacting with He atoms. Here we extend these calculations to the case of T2 molecules interacting with He atoms. Whereas the electronic structure of X2-He is virtually the same for all hydrogen isotopes X = H, D, or T, the collisional dynamics and molecular scattering wave functions are different for the different collisional pairs. We have calculated spectra up to a temperature of 9000 K and frequencies up to 20,000 cm−1. Here we compare the calculated collision-induced absorption spectra for the different hydrogen isotopes. While we have observed reasonable agreement between our calculations and laboratory measurements for the collisional H2-He and D2-He complexes, there are no laboratory measurements for T2-He collisional complexes, and one must rely on the fundamental theory, supported by the agreement between theory and experiment for the other isotopes.","PeriodicalId":15106,"journal":{"name":"原子与分子物理学报","volume":"201 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparison of the Calculated Collision-Induced Absorption Spectra by Dense Hydrogen-Helium, Deuterium-Helium, and Tritium-Helium Gas Mixtures\",\"authors\":\"M. Abel, L. Frommhold, Xiaoping Li, Katherine L.C. Hunt\",\"doi\":\"10.1155/2011/470530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have recently determined the induced dipole surface (IDS) and potential energy surface (PES) of collisional H2-He complexes. We have used these surfaces to compute the binary collision-induced absorption spectra of H2 molecules interacting with He atoms and of D2 molecules interacting with He atoms. Here we extend these calculations to the case of T2 molecules interacting with He atoms. Whereas the electronic structure of X2-He is virtually the same for all hydrogen isotopes X = H, D, or T, the collisional dynamics and molecular scattering wave functions are different for the different collisional pairs. We have calculated spectra up to a temperature of 9000 K and frequencies up to 20,000 cm−1. Here we compare the calculated collision-induced absorption spectra for the different hydrogen isotopes. While we have observed reasonable agreement between our calculations and laboratory measurements for the collisional H2-He and D2-He complexes, there are no laboratory measurements for T2-He collisional complexes, and one must rely on the fundamental theory, supported by the agreement between theory and experiment for the other isotopes.\",\"PeriodicalId\":15106,\"journal\":{\"name\":\"原子与分子物理学报\",\"volume\":\"201 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"原子与分子物理学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/470530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"原子与分子物理学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1155/2011/470530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of the Calculated Collision-Induced Absorption Spectra by Dense Hydrogen-Helium, Deuterium-Helium, and Tritium-Helium Gas Mixtures
We have recently determined the induced dipole surface (IDS) and potential energy surface (PES) of collisional H2-He complexes. We have used these surfaces to compute the binary collision-induced absorption spectra of H2 molecules interacting with He atoms and of D2 molecules interacting with He atoms. Here we extend these calculations to the case of T2 molecules interacting with He atoms. Whereas the electronic structure of X2-He is virtually the same for all hydrogen isotopes X = H, D, or T, the collisional dynamics and molecular scattering wave functions are different for the different collisional pairs. We have calculated spectra up to a temperature of 9000 K and frequencies up to 20,000 cm−1. Here we compare the calculated collision-induced absorption spectra for the different hydrogen isotopes. While we have observed reasonable agreement between our calculations and laboratory measurements for the collisional H2-He and D2-He complexes, there are no laboratory measurements for T2-He collisional complexes, and one must rely on the fundamental theory, supported by the agreement between theory and experiment for the other isotopes.