一种用于进化多目标优化成败检测的进度指标

Luis Martí, Jesús García, A. Berlanga, J. M. Molina
{"title":"一种用于进化多目标优化成败检测的进度指标","authors":"Luis Martí, Jesús García, A. Berlanga, J. M. Molina","doi":"10.1109/CEC.2010.5586352","DOIUrl":null,"url":null,"abstract":"In this work we present a novel progress indicator, called fitness homogeneity indicator (FHI). This indicator improves the other previously discussed indicators as it takes into account all possible processes taking place in the population while not requiring an intensive computation as it relies on the fitness values calculated for the individuals. It is also capable of equally detecting success and failure scenarios, hopefully making an early detection of the second case.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"2 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A progress indicator for detecting success and failure in evolutionary multi-objective optimization\",\"authors\":\"Luis Martí, Jesús García, A. Berlanga, J. M. Molina\",\"doi\":\"10.1109/CEC.2010.5586352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a novel progress indicator, called fitness homogeneity indicator (FHI). This indicator improves the other previously discussed indicators as it takes into account all possible processes taking place in the population while not requiring an intensive computation as it relies on the fitness values calculated for the individuals. It is also capable of equally detecting success and failure scenarios, hopefully making an early detection of the second case.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"2 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在这项工作中,我们提出了一个新的进度指标,称为适应度同质性指标(FHI)。该指标改进了前面讨论的其他指标,因为它考虑了种群中发生的所有可能过程,而不需要密集的计算,因为它依赖于为个体计算的适应度值。它还能够同样检测成功和失败的情况,希望能及早发现第二种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A progress indicator for detecting success and failure in evolutionary multi-objective optimization
In this work we present a novel progress indicator, called fitness homogeneity indicator (FHI). This indicator improves the other previously discussed indicators as it takes into account all possible processes taking place in the population while not requiring an intensive computation as it relies on the fitness values calculated for the individuals. It is also capable of equally detecting success and failure scenarios, hopefully making an early detection of the second case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step-Size Individualization: a Case Study for The Fish School Search Family A Genetic Ant Colony Optimization Algorithm for Inter-domain Path Computation problem under the Domain Uniqueness constraint A Simulated IMO-DRSA Approach for Cognitive Reduction in Multiobjective Financial Portfolio Interactive Optimization Applying Never-Ending Learning (NEL) Principles to Build a Gene Ontology (GO) Biocurator Many Layer Transfer Learning Genetic Algorithm (MLTLGA): a New Evolutionary Transfer Learning Approach Applied To Pneumonia Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1