{"title":"新型HDAC1抑制剂苯并杂环衍生物的设计、合成和评价","authors":"Minru Jiao, Bo Han, Xiu Gu, Hao Zhang, Aiyun Wang, Qingwei Zhang","doi":"10.1055/s-0042-1743487","DOIUrl":null,"url":null,"abstract":"In this study, the synthesis and biological evaluation of a variety of benzoheterocyclic-containing benzamide derivatives were described. Some of these compounds were proved to inhibiting the activity of histone deacetylase 1 (HDAC1) with IC50 values below the micromolar range, retarding proliferation of several human cancer cells, and surprisingly, not possessing toxicity to human normal cells and hERG K+ ion channels. Among those compounds, 3c was the most potent and efficacious derivative. Compound 3c was orally active and displayed excellent in vivo antitumor activity in a HCT-116 xenograft mice model.","PeriodicalId":19767,"journal":{"name":"Pharmaceutical Fronts","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Synthesis, and Evaluation of Benzoheterocyclic-Containing Derivatives as Novel HDAC1 Inhibitors\",\"authors\":\"Minru Jiao, Bo Han, Xiu Gu, Hao Zhang, Aiyun Wang, Qingwei Zhang\",\"doi\":\"10.1055/s-0042-1743487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the synthesis and biological evaluation of a variety of benzoheterocyclic-containing benzamide derivatives were described. Some of these compounds were proved to inhibiting the activity of histone deacetylase 1 (HDAC1) with IC50 values below the micromolar range, retarding proliferation of several human cancer cells, and surprisingly, not possessing toxicity to human normal cells and hERG K+ ion channels. Among those compounds, 3c was the most potent and efficacious derivative. Compound 3c was orally active and displayed excellent in vivo antitumor activity in a HCT-116 xenograft mice model.\",\"PeriodicalId\":19767,\"journal\":{\"name\":\"Pharmaceutical Fronts\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Fronts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0042-1743487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Fronts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0042-1743487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design, Synthesis, and Evaluation of Benzoheterocyclic-Containing Derivatives as Novel HDAC1 Inhibitors
In this study, the synthesis and biological evaluation of a variety of benzoheterocyclic-containing benzamide derivatives were described. Some of these compounds were proved to inhibiting the activity of histone deacetylase 1 (HDAC1) with IC50 values below the micromolar range, retarding proliferation of several human cancer cells, and surprisingly, not possessing toxicity to human normal cells and hERG K+ ion channels. Among those compounds, 3c was the most potent and efficacious derivative. Compound 3c was orally active and displayed excellent in vivo antitumor activity in a HCT-116 xenograft mice model.