新型环形谐振器生物传感器

P. Bienstman, T. Claes, C. Lerma Arce, W. Bogaerts, K. Komorowska, D. van Thourhout
{"title":"新型环形谐振器生物传感器","authors":"P. Bienstman, T. Claes, C. Lerma Arce, W. Bogaerts, K. Komorowska, D. van Thourhout","doi":"10.1109/CLEOE.2011.5943694","DOIUrl":null,"url":null,"abstract":"Label-free photonic biosensors can perform sensitive and quantitative multiparameter measurements on biological systems and can therefore contribute to major advances in medical analyses, food quality control, drug development and environmental monitoring. Additionally they offer the prospect of being incorporated in laboratories-on-a-chip that are capable of doing measurements at the point-of-care at an affordable cost. A crucial component in most of these photonic biosensors is a transducer that can transform a refractive index change in its environment to a measurable change in its optical transmission. Silicon-on-insulator is a material system with many assets for such transducers. First, it has a high refractive index contrast permitting very compact sensors of which many can be incorporated on a single chip, enabling multiplexed sensing. Second, silicon-on-insulator photonic chips can be made with CMOS-compatible process steps, allowing for a strong reduction of the chip cost by high volume fabrication. By using ring resonators with high quality factors that have very narrow resonance peaks, the smallest detectable spectral shift can be minimized.","PeriodicalId":6331,"journal":{"name":"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)","volume":"100 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel ring resonator based biosensors\",\"authors\":\"P. Bienstman, T. Claes, C. Lerma Arce, W. Bogaerts, K. Komorowska, D. van Thourhout\",\"doi\":\"10.1109/CLEOE.2011.5943694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Label-free photonic biosensors can perform sensitive and quantitative multiparameter measurements on biological systems and can therefore contribute to major advances in medical analyses, food quality control, drug development and environmental monitoring. Additionally they offer the prospect of being incorporated in laboratories-on-a-chip that are capable of doing measurements at the point-of-care at an affordable cost. A crucial component in most of these photonic biosensors is a transducer that can transform a refractive index change in its environment to a measurable change in its optical transmission. Silicon-on-insulator is a material system with many assets for such transducers. First, it has a high refractive index contrast permitting very compact sensors of which many can be incorporated on a single chip, enabling multiplexed sensing. Second, silicon-on-insulator photonic chips can be made with CMOS-compatible process steps, allowing for a strong reduction of the chip cost by high volume fabrication. By using ring resonators with high quality factors that have very narrow resonance peaks, the smallest detectable spectral shift can be minimized.\",\"PeriodicalId\":6331,\"journal\":{\"name\":\"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)\",\"volume\":\"100 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOE.2011.5943694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE.2011.5943694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无标签光子生物传感器可以对生物系统进行敏感和定量的多参数测量,因此可以在医学分析,食品质量控制,药物开发和环境监测方面取得重大进展。此外,它们提供了被纳入芯片实验室的前景,能够以负担得起的成本在护理点进行测量。在大多数这些光子生物传感器中,一个关键部件是一个换能器,它可以将其环境中的折射率变化转换为可测量的光传输变化。绝缘体上硅是一种具有许多资产的材料系统。首先,它具有高折射率对比度,允许非常紧凑的传感器,其中许多传感器可以集成在单个芯片上,从而实现多路传感。其次,绝缘体上硅光子芯片可以用cmos兼容的工艺步骤制造,从而通过大批量制造大大降低了芯片成本。通过使用具有非常窄的共振峰的高质量因子的环形谐振器,可以最小化最小的可检测光谱位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel ring resonator based biosensors
Label-free photonic biosensors can perform sensitive and quantitative multiparameter measurements on biological systems and can therefore contribute to major advances in medical analyses, food quality control, drug development and environmental monitoring. Additionally they offer the prospect of being incorporated in laboratories-on-a-chip that are capable of doing measurements at the point-of-care at an affordable cost. A crucial component in most of these photonic biosensors is a transducer that can transform a refractive index change in its environment to a measurable change in its optical transmission. Silicon-on-insulator is a material system with many assets for such transducers. First, it has a high refractive index contrast permitting very compact sensors of which many can be incorporated on a single chip, enabling multiplexed sensing. Second, silicon-on-insulator photonic chips can be made with CMOS-compatible process steps, allowing for a strong reduction of the chip cost by high volume fabrication. By using ring resonators with high quality factors that have very narrow resonance peaks, the smallest detectable spectral shift can be minimized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optomechanical crystals and their quantum optical applications Few-quantum-dot lasing in photonic crystal nanocavities Generation of a macroscopic singlet state in an atomic ensemble High-power ultrafast laser source with 300 MHz repetition rate for trapped-ion quantum logic Infrared spectroscopic determination of drugs in saliva
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1