Roumen Dimitrov Sankoff, Behrooz Bijani, Gianluca Di Martino, Julie Watson, C. S. Marshall
{"title":"流入控制装置的建模:从流动回路到模拟器","authors":"Roumen Dimitrov Sankoff, Behrooz Bijani, Gianluca Di Martino, Julie Watson, C. S. Marshall","doi":"10.2118/192116-MS","DOIUrl":null,"url":null,"abstract":"\n The intent of this work is to outline the workflow that engineers can apply in the selection and modelling of inflow control devices (ICDs) for use in completion design. It provides a step-by-step guide and examples of how to address the key challenges in the field of modelling of ICDs, namely: the choice of ICD technology that is most suitable for the particular well; the process of building a custom ICD performance model and import into the reservoir simulator; considerations in setting up the simulation model; and, verification of the results.\n The paper highlights the risk of using empirical ICD models, available in reservoir simulators, in the early stages of evaluating inflow control technology. It then demonstrates that the decision on whether or not an inflow control is required, and what type, can be made without resorting to these built-in empirical models in reservoir simulators.\n The paper introduces a new approach to evaluation, comparison and modelling of inflow control devices of different types and geometry. Focused on simplicity and accuracy, the method of ICD characterisation is described, as is how to use this characterisation to generate input to the reservoir simulator. A method for verification of the output from the reservoir simulator is also presented.\n The application of this modelling approach is illustrated through a case study on evaluating inflow control technology in a mature oil reservoir.","PeriodicalId":11182,"journal":{"name":"Day 3 Thu, October 25, 2018","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modelling of Inflow Control Devices: From the Flow Loop to the Simulator\",\"authors\":\"Roumen Dimitrov Sankoff, Behrooz Bijani, Gianluca Di Martino, Julie Watson, C. S. Marshall\",\"doi\":\"10.2118/192116-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The intent of this work is to outline the workflow that engineers can apply in the selection and modelling of inflow control devices (ICDs) for use in completion design. It provides a step-by-step guide and examples of how to address the key challenges in the field of modelling of ICDs, namely: the choice of ICD technology that is most suitable for the particular well; the process of building a custom ICD performance model and import into the reservoir simulator; considerations in setting up the simulation model; and, verification of the results.\\n The paper highlights the risk of using empirical ICD models, available in reservoir simulators, in the early stages of evaluating inflow control technology. It then demonstrates that the decision on whether or not an inflow control is required, and what type, can be made without resorting to these built-in empirical models in reservoir simulators.\\n The paper introduces a new approach to evaluation, comparison and modelling of inflow control devices of different types and geometry. Focused on simplicity and accuracy, the method of ICD characterisation is described, as is how to use this characterisation to generate input to the reservoir simulator. A method for verification of the output from the reservoir simulator is also presented.\\n The application of this modelling approach is illustrated through a case study on evaluating inflow control technology in a mature oil reservoir.\",\"PeriodicalId\":11182,\"journal\":{\"name\":\"Day 3 Thu, October 25, 2018\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, October 25, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/192116-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, October 25, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/192116-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling of Inflow Control Devices: From the Flow Loop to the Simulator
The intent of this work is to outline the workflow that engineers can apply in the selection and modelling of inflow control devices (ICDs) for use in completion design. It provides a step-by-step guide and examples of how to address the key challenges in the field of modelling of ICDs, namely: the choice of ICD technology that is most suitable for the particular well; the process of building a custom ICD performance model and import into the reservoir simulator; considerations in setting up the simulation model; and, verification of the results.
The paper highlights the risk of using empirical ICD models, available in reservoir simulators, in the early stages of evaluating inflow control technology. It then demonstrates that the decision on whether or not an inflow control is required, and what type, can be made without resorting to these built-in empirical models in reservoir simulators.
The paper introduces a new approach to evaluation, comparison and modelling of inflow control devices of different types and geometry. Focused on simplicity and accuracy, the method of ICD characterisation is described, as is how to use this characterisation to generate input to the reservoir simulator. A method for verification of the output from the reservoir simulator is also presented.
The application of this modelling approach is illustrated through a case study on evaluating inflow control technology in a mature oil reservoir.