速度问题:如何优先优化更快的网站

Christina Xilogianni, Filippos-Rafail Doukas, Ioannis C. Drivas, D. Kouis
{"title":"速度问题:如何优先优化更快的网站","authors":"Christina Xilogianni, Filippos-Rafail Doukas, Ioannis C. Drivas, D. Kouis","doi":"10.3390/analytics1020012","DOIUrl":null,"url":null,"abstract":"Website loading speed time matters when it comes to users’ engagement and conversion rate optimization. The websites of libraries, archives, and museums (LAMs) are not an exception to this assumption. In this research paper, we propose a methodological assessment schema to evaluate the LAMs webpages’ speed performance for a greater usability and navigability. The proposed methodology is composed of three different stages. First, the retrieval of the LAMs webpages’ speed data is taking place. A sample of 121 cases of LAMs worldwide has been collected using the PageSpeed Insights tool of Google for their mobile and desktop performance. In the second stage, a statistical reliability and validity analysis takes place to propose a speed performance measurement system whose metrics express an internal cohesion and consistency. One step further, in the third stage, several predictive regression models are developed to discover which of the involved metrics impact mostly the total speed score of mobile or desktop versions of the examined webpages. The proposed methodology and the study’s results could be helpful for LAMs administrators to set a data-driven framework of prioritization regarding the rectifications that need to be implemented for the optimized loading speed time of the webpages.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"46 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Speed Matters: What to Prioritize in Optimization for Faster Websites\",\"authors\":\"Christina Xilogianni, Filippos-Rafail Doukas, Ioannis C. Drivas, D. Kouis\",\"doi\":\"10.3390/analytics1020012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Website loading speed time matters when it comes to users’ engagement and conversion rate optimization. The websites of libraries, archives, and museums (LAMs) are not an exception to this assumption. In this research paper, we propose a methodological assessment schema to evaluate the LAMs webpages’ speed performance for a greater usability and navigability. The proposed methodology is composed of three different stages. First, the retrieval of the LAMs webpages’ speed data is taking place. A sample of 121 cases of LAMs worldwide has been collected using the PageSpeed Insights tool of Google for their mobile and desktop performance. In the second stage, a statistical reliability and validity analysis takes place to propose a speed performance measurement system whose metrics express an internal cohesion and consistency. One step further, in the third stage, several predictive regression models are developed to discover which of the involved metrics impact mostly the total speed score of mobile or desktop versions of the examined webpages. The proposed methodology and the study’s results could be helpful for LAMs administrators to set a data-driven framework of prioritization regarding the rectifications that need to be implemented for the optimized loading speed time of the webpages.\",\"PeriodicalId\":93078,\"journal\":{\"name\":\"Big data analytics\",\"volume\":\"46 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big data analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/analytics1020012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big data analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics1020012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当涉及到用户粘性和转化率优化时,网站加载速度非常重要。图书馆、档案馆和博物馆(lam)的网站也不例外。在本文中,我们提出了一种方法学评估模式来评估lam网页的速度性能,以获得更好的可用性和可导航性。所建议的方法由三个不同的阶段组成。首先,ams网页速度数据的检索正在进行。使用谷歌的pagespeedinsights工具收集了全球范围内121个ram案例的样本,以了解它们的移动和桌面性能。在第二阶段,进行了统计信度和效度分析,提出了一个度量指标表达内部凝聚力和一致性的速度绩效度量系统。更进一步,在第三阶段,开发了几个预测回归模型,以发现哪些涉及的指标对所检查网页的移动或桌面版本的总速度得分影响最大。建议的方法和研究结果可以帮助LAMs管理员设置一个数据驱动的优先级框架,该框架涉及需要实施的优化网页加载速度时间的纠正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speed Matters: What to Prioritize in Optimization for Faster Websites
Website loading speed time matters when it comes to users’ engagement and conversion rate optimization. The websites of libraries, archives, and museums (LAMs) are not an exception to this assumption. In this research paper, we propose a methodological assessment schema to evaluate the LAMs webpages’ speed performance for a greater usability and navigability. The proposed methodology is composed of three different stages. First, the retrieval of the LAMs webpages’ speed data is taking place. A sample of 121 cases of LAMs worldwide has been collected using the PageSpeed Insights tool of Google for their mobile and desktop performance. In the second stage, a statistical reliability and validity analysis takes place to propose a speed performance measurement system whose metrics express an internal cohesion and consistency. One step further, in the third stage, several predictive regression models are developed to discover which of the involved metrics impact mostly the total speed score of mobile or desktop versions of the examined webpages. The proposed methodology and the study’s results could be helpful for LAMs administrators to set a data-driven framework of prioritization regarding the rectifications that need to be implemented for the optimized loading speed time of the webpages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
A Comparative Analysis of VirLock and Bacteriophage ϕ6 through the Lens of Game Theory Can Oral Grades Predict Final Examination Scores? Case Study in a Higher Education Military Academy Relating the Ramsay Quotient Model to the Classical D-Scoring Rule An Exploration of Clustering Algorithms for Customer Segmentation in the UK Retail Market A Novel Curve Clustering Method for Functional Data: Applications to COVID-19 and Financial Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1