基于遗传算法的COVID-19死亡率ARIMA模型估计

Mohanad A. Deif, A. Solyman, Rania E. Hammam
{"title":"基于遗传算法的COVID-19死亡率ARIMA模型估计","authors":"Mohanad A. Deif, A. Solyman, Rania E. Hammam","doi":"10.1142/s0219622021500528","DOIUrl":null,"url":null,"abstract":"This paper presents a forecasting model for the mortality rates of COVID-19 in six of the top most affected countries depending on the hybrid Genetic Algorithm and Autoregressive Integrated Moving Average (GA-ARIMA). It was aimed to develop an advanced and reliable predicting model that provides future forecasts of possible confirmed cases and mortality rates (Total Deaths per 1 million Population of COVID-19) that could help the public health authorities to develop plans required to resolve the crisis of the pandemic threat in a timely and efficient manner. The study focused on predicting the mortality rates of COVID-19 because the mortality rate determines the prevalence of highly contagious diseases. The Genetic algorithm (GA) has the capability of improving the forecasting performance of the ARIMA model by optimizing the ARIMA model parameters. The findings of this study revealed the high prediction accuracy of the proposed (GA-ARIMA) model. Moreover, it has provided better and consistent predictions compared to the traditional ARIMA model and can be a reliable method in predicting expected death rates as well as confirmed cases of COVID-19. Hence, it was concluded that combining ARIMA with GA is further accurate than ARIMA alone and GA can be an alternative to find the parameters and model orders for the ARIMA model.","PeriodicalId":13527,"journal":{"name":"Int. J. Inf. Technol. Decis. Mak.","volume":"15 1","pages":"1775-1798"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"ARIMA Model Estimation Based on Genetic Algorithm for COVID-19 Mortality Rates\",\"authors\":\"Mohanad A. Deif, A. Solyman, Rania E. Hammam\",\"doi\":\"10.1142/s0219622021500528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a forecasting model for the mortality rates of COVID-19 in six of the top most affected countries depending on the hybrid Genetic Algorithm and Autoregressive Integrated Moving Average (GA-ARIMA). It was aimed to develop an advanced and reliable predicting model that provides future forecasts of possible confirmed cases and mortality rates (Total Deaths per 1 million Population of COVID-19) that could help the public health authorities to develop plans required to resolve the crisis of the pandemic threat in a timely and efficient manner. The study focused on predicting the mortality rates of COVID-19 because the mortality rate determines the prevalence of highly contagious diseases. The Genetic algorithm (GA) has the capability of improving the forecasting performance of the ARIMA model by optimizing the ARIMA model parameters. The findings of this study revealed the high prediction accuracy of the proposed (GA-ARIMA) model. Moreover, it has provided better and consistent predictions compared to the traditional ARIMA model and can be a reliable method in predicting expected death rates as well as confirmed cases of COVID-19. Hence, it was concluded that combining ARIMA with GA is further accurate than ARIMA alone and GA can be an alternative to find the parameters and model orders for the ARIMA model.\",\"PeriodicalId\":13527,\"journal\":{\"name\":\"Int. J. Inf. Technol. Decis. Mak.\",\"volume\":\"15 1\",\"pages\":\"1775-1798\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Decis. Mak.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219622021500528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Decis. Mak.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219622021500528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文提出了基于混合遗传算法和自回归综合移动平均(GA-ARIMA)的6个疫情最严重国家COVID-19死亡率预测模型。这是为了开发先进的、可靠的预测模型,预测未来可能出现的确诊病例和死亡率(每100万人口中死亡人数),从而帮助公共卫生当局制定及时有效地解决大流行威胁危机所需的计划。该研究的重点是预测COVID-19的死亡率,因为死亡率决定了高传染性疾病的患病率。遗传算法通过对ARIMA模型参数的优化,提高了ARIMA模型的预测性能。研究结果表明,本文提出的(GA-ARIMA)模型具有较高的预测精度。此外,与传统的ARIMA模型相比,它提供了更好和一致的预测,可以作为预测COVID-19预期死亡率和确诊病例的可靠方法。综上所述,ARIMA与GA相结合比单独使用ARIMA精度更高,GA可以作为ARIMA模型参数和模型阶数的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ARIMA Model Estimation Based on Genetic Algorithm for COVID-19 Mortality Rates
This paper presents a forecasting model for the mortality rates of COVID-19 in six of the top most affected countries depending on the hybrid Genetic Algorithm and Autoregressive Integrated Moving Average (GA-ARIMA). It was aimed to develop an advanced and reliable predicting model that provides future forecasts of possible confirmed cases and mortality rates (Total Deaths per 1 million Population of COVID-19) that could help the public health authorities to develop plans required to resolve the crisis of the pandemic threat in a timely and efficient manner. The study focused on predicting the mortality rates of COVID-19 because the mortality rate determines the prevalence of highly contagious diseases. The Genetic algorithm (GA) has the capability of improving the forecasting performance of the ARIMA model by optimizing the ARIMA model parameters. The findings of this study revealed the high prediction accuracy of the proposed (GA-ARIMA) model. Moreover, it has provided better and consistent predictions compared to the traditional ARIMA model and can be a reliable method in predicting expected death rates as well as confirmed cases of COVID-19. Hence, it was concluded that combining ARIMA with GA is further accurate than ARIMA alone and GA can be an alternative to find the parameters and model orders for the ARIMA model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editors' Introduction for the Special Issue on The Role of Decision Making to Overcome COVID-19 The Behavioral TOPSIS Based on Prospect Theory and Regret Theory Instigating the Sailfish Optimization Algorithm Based on Opposition-Based Learning to Determine the Salient Features From a High-Dimensional Dataset Optimized Deep Learning-Enabled Hybrid Logistic Piece-Wise Chaotic Map for Secured Medical Data Storage System A Typology Scheme for the Criteria Weighting Methods in MADM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1