基于强化学习的飞行控制器,能够控制具有四个,三个和两个工作电机的四轴飞行器

Amir Ramezani Dooraki, D. Lee
{"title":"基于强化学习的飞行控制器,能够控制具有四个,三个和两个工作电机的四轴飞行器","authors":"Amir Ramezani Dooraki, D. Lee","doi":"10.23919/ICCAS50221.2020.9268270","DOIUrl":null,"url":null,"abstract":"In this research, we show how a reinforcement learning based algorithm called Fault-Tolerant Bio-inspired Flight Controller (FT-BFC) is capable of training a single neural network based model to fly a quadcopter with two, three, and four working rotors. Our algorithm can learn a low-level flight controller that directly controls angular velocities of motors to fly a quadcopter when it has four fully functional motors, and also, despite having one or two motor failures (That is, our proposed flight controller is a fault-tolerant controller as well). In the training and running of our controller, we do not use any conventional flight controller, such as a PID or SMC controller. We test our algorithm in a simulation environment, Gazebo simulator, and illustrate our simulation results that backing up our algorithm capabilities. Finally, before concluding our paper, we discuss the implementation of our algorithm in a real quadcopter.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"71 1","pages":"161-166"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reinforcement learning based flight controller capable of controlling a quadcopter with four, three and two working motors\",\"authors\":\"Amir Ramezani Dooraki, D. Lee\",\"doi\":\"10.23919/ICCAS50221.2020.9268270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we show how a reinforcement learning based algorithm called Fault-Tolerant Bio-inspired Flight Controller (FT-BFC) is capable of training a single neural network based model to fly a quadcopter with two, three, and four working rotors. Our algorithm can learn a low-level flight controller that directly controls angular velocities of motors to fly a quadcopter when it has four fully functional motors, and also, despite having one or two motor failures (That is, our proposed flight controller is a fault-tolerant controller as well). In the training and running of our controller, we do not use any conventional flight controller, such as a PID or SMC controller. We test our algorithm in a simulation environment, Gazebo simulator, and illustrate our simulation results that backing up our algorithm capabilities. Finally, before concluding our paper, we discuss the implementation of our algorithm in a real quadcopter.\",\"PeriodicalId\":6732,\"journal\":{\"name\":\"2020 20th International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"71 1\",\"pages\":\"161-166\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 20th International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS50221.2020.9268270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项研究中,我们展示了一种基于强化学习的算法,称为容错生物启发飞行控制器(FT-BFC),它能够训练一个基于神经网络的模型来驾驶具有两个、三个和四个工作旋翼的四轴飞行器。我们的算法可以学习一个低级飞行控制器,当四轴飞行器有四个功能齐全的电机时,它可以直接控制电机的角速度,尽管有一个或两个电机故障(也就是说,我们提出的飞行控制器也是一个容错控制器)。在我们的控制器的训练和运行中,我们不使用任何传统的飞行控制器,如PID或SMC控制器。我们在仿真环境Gazebo模拟器中测试了我们的算法,并说明了支持我们算法功能的仿真结果。最后,在结束本文之前,我们讨论了我们的算法在实际四轴飞行器中的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement learning based flight controller capable of controlling a quadcopter with four, three and two working motors
In this research, we show how a reinforcement learning based algorithm called Fault-Tolerant Bio-inspired Flight Controller (FT-BFC) is capable of training a single neural network based model to fly a quadcopter with two, three, and four working rotors. Our algorithm can learn a low-level flight controller that directly controls angular velocities of motors to fly a quadcopter when it has four fully functional motors, and also, despite having one or two motor failures (That is, our proposed flight controller is a fault-tolerant controller as well). In the training and running of our controller, we do not use any conventional flight controller, such as a PID or SMC controller. We test our algorithm in a simulation environment, Gazebo simulator, and illustrate our simulation results that backing up our algorithm capabilities. Finally, before concluding our paper, we discuss the implementation of our algorithm in a real quadcopter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time quadrotor actuator fault detection and isolation using multivariate statistical analysis techniques with sensor measurements Autonomous docking of an Unmanned Surface Vehicle based on Reachability Analysis Clutch Torque Estimation of Ball-ramp Dual Clutch Transmission using Higher Order Disturbance Observer Robust Traffic Light Detection and Classification Under Day and Night Conditions Visual Surveillance using Deep Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1