F. O. Aweda, S. Adebayo, T. K. Samson, I. A. Ojedokun
{"title":"利用MERRA-2数据模拟撒哈拉以南非洲城镇气象参数的净辐射测量","authors":"F. O. Aweda, S. Adebayo, T. K. Samson, I. A. Ojedokun","doi":"10.5829/ijee.2021.12.02.10","DOIUrl":null,"url":null,"abstract":"In this study, the net radiation was estimated using a simple straightforward expression proposed by different researchers, which is based on the principle of the Fourier Series Technique. The estimation of net radiation of Iwo ( ) from the data collected from the archive of HelioClim satellite MERRA- 2 (i.e. global solar radiation and air temperature) was done on the real and imaginary measurements. The result of both real and imaginary radiation at maximum revealed ( ) and minimum at about ( ), while solar radiation and temperature revealed about ( ) and 299K maximum and minimum ( ) and 297.7K, respectively. Statistically, the result indicated that the regression coefficient of 3.959 with t- statistics of 3.34 and p < 0.05 indicates that for every 1K increase in air temperature, solar radiation will increase by 3.959, which shows that both solar radiation and temperature have a significant effect on net radiation. Therefore, the researchers concluded that Iwo had maximum real net radiation in February with months such as January, March, July, August, October and December as minimum radiation while imaginary radiation had its maximum and minimum in September and August respectively.","PeriodicalId":14542,"journal":{"name":"Iranian Journal of Energy and Environment","volume":"11 Suppl 9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modelling Net Radiative Measurement of Meteorological Parameters Using MERRA-2 Data in Sub-Sahara African Town\",\"authors\":\"F. O. Aweda, S. Adebayo, T. K. Samson, I. A. Ojedokun\",\"doi\":\"10.5829/ijee.2021.12.02.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the net radiation was estimated using a simple straightforward expression proposed by different researchers, which is based on the principle of the Fourier Series Technique. The estimation of net radiation of Iwo ( ) from the data collected from the archive of HelioClim satellite MERRA- 2 (i.e. global solar radiation and air temperature) was done on the real and imaginary measurements. The result of both real and imaginary radiation at maximum revealed ( ) and minimum at about ( ), while solar radiation and temperature revealed about ( ) and 299K maximum and minimum ( ) and 297.7K, respectively. Statistically, the result indicated that the regression coefficient of 3.959 with t- statistics of 3.34 and p < 0.05 indicates that for every 1K increase in air temperature, solar radiation will increase by 3.959, which shows that both solar radiation and temperature have a significant effect on net radiation. Therefore, the researchers concluded that Iwo had maximum real net radiation in February with months such as January, March, July, August, October and December as minimum radiation while imaginary radiation had its maximum and minimum in September and August respectively.\",\"PeriodicalId\":14542,\"journal\":{\"name\":\"Iranian Journal of Energy and Environment\",\"volume\":\"11 Suppl 9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Energy and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ijee.2021.12.02.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Energy and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ijee.2021.12.02.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling Net Radiative Measurement of Meteorological Parameters Using MERRA-2 Data in Sub-Sahara African Town
In this study, the net radiation was estimated using a simple straightforward expression proposed by different researchers, which is based on the principle of the Fourier Series Technique. The estimation of net radiation of Iwo ( ) from the data collected from the archive of HelioClim satellite MERRA- 2 (i.e. global solar radiation and air temperature) was done on the real and imaginary measurements. The result of both real and imaginary radiation at maximum revealed ( ) and minimum at about ( ), while solar radiation and temperature revealed about ( ) and 299K maximum and minimum ( ) and 297.7K, respectively. Statistically, the result indicated that the regression coefficient of 3.959 with t- statistics of 3.34 and p < 0.05 indicates that for every 1K increase in air temperature, solar radiation will increase by 3.959, which shows that both solar radiation and temperature have a significant effect on net radiation. Therefore, the researchers concluded that Iwo had maximum real net radiation in February with months such as January, March, July, August, October and December as minimum radiation while imaginary radiation had its maximum and minimum in September and August respectively.