{"title":"声波在时域上的逆障碍物散射","authors":"Lu Zhao, Heping Dong, Fuming Ma","doi":"10.3934/IPI.2021037","DOIUrl":null,"url":null,"abstract":"This paper concerns an inverse acoustic scattering problem which is to determine the location and shape of a rigid obstacle from time domain scattered field data. An efficient convolution quadrature method combined with nonlinear integral equation method is proposed to solve the inverse problem. In particular, replacing the classic Fourier transform with the convolution quadrature method for time discretization, the boundary integral equations for the Helmholtz equation with complex wave numbers can be obtained to guarantee the numerically approximate causality property of the scattered field under some condition. Numerical experiments are presented to demonstrate the effectiveness and robustness of the proposed method.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inverse obstacle scattering for acoustic waves in the time domain\",\"authors\":\"Lu Zhao, Heping Dong, Fuming Ma\",\"doi\":\"10.3934/IPI.2021037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns an inverse acoustic scattering problem which is to determine the location and shape of a rigid obstacle from time domain scattered field data. An efficient convolution quadrature method combined with nonlinear integral equation method is proposed to solve the inverse problem. In particular, replacing the classic Fourier transform with the convolution quadrature method for time discretization, the boundary integral equations for the Helmholtz equation with complex wave numbers can be obtained to guarantee the numerically approximate causality property of the scattered field under some condition. Numerical experiments are presented to demonstrate the effectiveness and robustness of the proposed method.\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/IPI.2021037\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/IPI.2021037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Inverse obstacle scattering for acoustic waves in the time domain
This paper concerns an inverse acoustic scattering problem which is to determine the location and shape of a rigid obstacle from time domain scattered field data. An efficient convolution quadrature method combined with nonlinear integral equation method is proposed to solve the inverse problem. In particular, replacing the classic Fourier transform with the convolution quadrature method for time discretization, the boundary integral equations for the Helmholtz equation with complex wave numbers can be obtained to guarantee the numerically approximate causality property of the scattered field under some condition. Numerical experiments are presented to demonstrate the effectiveness and robustness of the proposed method.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.