{"title":"三维点阵布置圆形截面微通道的制备及其开关阀的应用","authors":"Kaori Uehara, Yutaka Hori, T. Ishigure","doi":"10.3390/micro3030043","DOIUrl":null,"url":null,"abstract":"In this paper, circular cross-section microchannels with 3-D lattice arrangements are designed and fabricated using the Mosquito method in order to construct on-off valves. The 3-D microchannels with on-off valves consist of two types of lines: the flow lines for chemical liquid flow and the control lines to activate the valves. We confirmed that both a circular cross-section and a PDMS with low elastic modulus used as the microchannel material contribute to a valve that can be closed with a lower pressure. Then, we demonstrated liquid flow to evaluate the functionality of the valve. Fluorescein solution was flown into a flow line. We found that the fluorescence intensity decreases at the intersection between the flow and control lines when the flow line is closed by the inflation of the control line, experimentally confirming the functionality of the valve microchannels fabricated via the Mosquito method.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Circular Cross-Section Microchannels with 3-D Lattice Arrangement and Their Use as On-Off Valves\",\"authors\":\"Kaori Uehara, Yutaka Hori, T. Ishigure\",\"doi\":\"10.3390/micro3030043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, circular cross-section microchannels with 3-D lattice arrangements are designed and fabricated using the Mosquito method in order to construct on-off valves. The 3-D microchannels with on-off valves consist of two types of lines: the flow lines for chemical liquid flow and the control lines to activate the valves. We confirmed that both a circular cross-section and a PDMS with low elastic modulus used as the microchannel material contribute to a valve that can be closed with a lower pressure. Then, we demonstrated liquid flow to evaluate the functionality of the valve. Fluorescein solution was flown into a flow line. We found that the fluorescence intensity decreases at the intersection between the flow and control lines when the flow line is closed by the inflation of the control line, experimentally confirming the functionality of the valve microchannels fabricated via the Mosquito method.\",\"PeriodicalId\":18398,\"journal\":{\"name\":\"Micro & Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro & Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/micro3030043\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/micro3030043","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fabrication of Circular Cross-Section Microchannels with 3-D Lattice Arrangement and Their Use as On-Off Valves
In this paper, circular cross-section microchannels with 3-D lattice arrangements are designed and fabricated using the Mosquito method in order to construct on-off valves. The 3-D microchannels with on-off valves consist of two types of lines: the flow lines for chemical liquid flow and the control lines to activate the valves. We confirmed that both a circular cross-section and a PDMS with low elastic modulus used as the microchannel material contribute to a valve that can be closed with a lower pressure. Then, we demonstrated liquid flow to evaluate the functionality of the valve. Fluorescein solution was flown into a flow line. We found that the fluorescence intensity decreases at the intersection between the flow and control lines when the flow line is closed by the inflation of the control line, experimentally confirming the functionality of the valve microchannels fabricated via the Mosquito method.
期刊介绍:
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities.
Scope
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities.
Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications.
Typical topics include:
Micro and nanostructures for the device communities
MEMS and NEMS
Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data
Synthesis and processing
Micro and nano-photonics
Molecular machines, circuits and self-assembly
Organic and inorganic micro and nanostructures
Micro and nano-fluidics