Preeti Prasannan, Elodie Siney, Shreyasi Chatterjee, David Johnston, Mohammad Shah, Amrit Mudher, Sandrine Willaime-Morawek
{"title":"一个3d诱导的多能干细胞衍生的人类神经培养模型,用于研究阿尔茨海默病的某些分子和生化方面","authors":"Preeti Prasannan, Elodie Siney, Shreyasi Chatterjee, David Johnston, Mohammad Shah, Amrit Mudher, Sandrine Willaime-Morawek","doi":"10.1007/s44164-022-00038-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Alzheimer's disease (AD) early pathology needs better understanding and models. Here, we describe a human induced pluripotent stem cells (iPSCs)-derived 3D neural culture model to study certain aspects of AD biochemistry and pathology.</p><p><strong>Method: </strong>iPSCs derived from controls and AD patients with Presenilin1 mutations were cultured in a 3D platform with a similar microenvironment to the brain, to differentiate into neurons and astrocytes and self-organise into 3D structures by 3 weeks of differentiation in vitro.</p><p><strong>Results: </strong>Cells express astrocytic (GFAP), neuronal (β3-Tubulin, MAP2), glutamatergic (VGLUT1), GABAergic (GAD65/67), pre-synaptic (Synapsin1) markers and a low level of neural progenitor cell (Nestin) marker after 6 and 12 weeks of differentiation in 3D. The foetal 3R Tau isoforms and adult 4R Tau isoforms were detected at 6 weeks post differentiation, showing advanced neuronal maturity. In the 3D AD cells, total and insoluble Tau levels were higher than in 3D control cells.</p><p><strong>Conclusion: </strong>Our data indicates that this model may recapitulate the early biochemical and pathological disease features and can be a relevant platform for studying early cellular and biochemical changes and the identification of drug targets.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-022-00038-5.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"7 1","pages":"447-462"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756488/pdf/","citationCount":"0","resultStr":"{\"title\":\"A 3D-induced pluripotent stem cell-derived human neural culture model to study certain molecular and biochemical aspects of Alzheimer's disease.\",\"authors\":\"Preeti Prasannan, Elodie Siney, Shreyasi Chatterjee, David Johnston, Mohammad Shah, Amrit Mudher, Sandrine Willaime-Morawek\",\"doi\":\"10.1007/s44164-022-00038-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Alzheimer's disease (AD) early pathology needs better understanding and models. Here, we describe a human induced pluripotent stem cells (iPSCs)-derived 3D neural culture model to study certain aspects of AD biochemistry and pathology.</p><p><strong>Method: </strong>iPSCs derived from controls and AD patients with Presenilin1 mutations were cultured in a 3D platform with a similar microenvironment to the brain, to differentiate into neurons and astrocytes and self-organise into 3D structures by 3 weeks of differentiation in vitro.</p><p><strong>Results: </strong>Cells express astrocytic (GFAP), neuronal (β3-Tubulin, MAP2), glutamatergic (VGLUT1), GABAergic (GAD65/67), pre-synaptic (Synapsin1) markers and a low level of neural progenitor cell (Nestin) marker after 6 and 12 weeks of differentiation in 3D. The foetal 3R Tau isoforms and adult 4R Tau isoforms were detected at 6 weeks post differentiation, showing advanced neuronal maturity. In the 3D AD cells, total and insoluble Tau levels were higher than in 3D control cells.</p><p><strong>Conclusion: </strong>Our data indicates that this model may recapitulate the early biochemical and pathological disease features and can be a relevant platform for studying early cellular and biochemical changes and the identification of drug targets.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-022-00038-5.</p>\",\"PeriodicalId\":73357,\"journal\":{\"name\":\"In vitro models\",\"volume\":\"7 1\",\"pages\":\"447-462\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756488/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In vitro models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44164-022-00038-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-022-00038-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
A 3D-induced pluripotent stem cell-derived human neural culture model to study certain molecular and biochemical aspects of Alzheimer's disease.
Purpose: Alzheimer's disease (AD) early pathology needs better understanding and models. Here, we describe a human induced pluripotent stem cells (iPSCs)-derived 3D neural culture model to study certain aspects of AD biochemistry and pathology.
Method: iPSCs derived from controls and AD patients with Presenilin1 mutations were cultured in a 3D platform with a similar microenvironment to the brain, to differentiate into neurons and astrocytes and self-organise into 3D structures by 3 weeks of differentiation in vitro.
Results: Cells express astrocytic (GFAP), neuronal (β3-Tubulin, MAP2), glutamatergic (VGLUT1), GABAergic (GAD65/67), pre-synaptic (Synapsin1) markers and a low level of neural progenitor cell (Nestin) marker after 6 and 12 weeks of differentiation in 3D. The foetal 3R Tau isoforms and adult 4R Tau isoforms were detected at 6 weeks post differentiation, showing advanced neuronal maturity. In the 3D AD cells, total and insoluble Tau levels were higher than in 3D control cells.
Conclusion: Our data indicates that this model may recapitulate the early biochemical and pathological disease features and can be a relevant platform for studying early cellular and biochemical changes and the identification of drug targets.
Supplementary information: The online version contains supplementary material available at 10.1007/s44164-022-00038-5.