石碑的生物加固。概述

T. Nazel
{"title":"石碑的生物加固。概述","authors":"T. Nazel","doi":"10.1515/rbm-2016-0001","DOIUrl":null,"url":null,"abstract":"Abstract This article reviews the carbonation process through biomineralization referred to as Microbial Induced Calcium Carbonate Precipitation (MICCP) for the conservation of carbonate stone monuments and historic building materials. This biological process widely occurs in nature as microbes produce inorganic materials within their basic metabolic activities. The first patent, which explained this method dates from approximately twenty-five years ago. Since then, different research groups have investigated substitute methodologies and various technical applications to provide a protective calcium carbonate layer on the surface of deteriorated historic buildings and stone monuments as well as to consolidate their inner weakened structure through this biodeposition process. The article reviews selected literature, highlights open queries and promotes discussion of a selection of issues, production mechanisms, application techniques, performance and bonding with stone structure. While many questions regarding this significant method have been focused in published sources, there are considerable possibilities for new research.","PeriodicalId":20957,"journal":{"name":"Restoration of Buildings and Monuments","volume":"53 1","pages":"37 - 45"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bioconsolidation of Stone Monuments. An Overview\",\"authors\":\"T. Nazel\",\"doi\":\"10.1515/rbm-2016-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article reviews the carbonation process through biomineralization referred to as Microbial Induced Calcium Carbonate Precipitation (MICCP) for the conservation of carbonate stone monuments and historic building materials. This biological process widely occurs in nature as microbes produce inorganic materials within their basic metabolic activities. The first patent, which explained this method dates from approximately twenty-five years ago. Since then, different research groups have investigated substitute methodologies and various technical applications to provide a protective calcium carbonate layer on the surface of deteriorated historic buildings and stone monuments as well as to consolidate their inner weakened structure through this biodeposition process. The article reviews selected literature, highlights open queries and promotes discussion of a selection of issues, production mechanisms, application techniques, performance and bonding with stone structure. While many questions regarding this significant method have been focused in published sources, there are considerable possibilities for new research.\",\"PeriodicalId\":20957,\"journal\":{\"name\":\"Restoration of Buildings and Monuments\",\"volume\":\"53 1\",\"pages\":\"37 - 45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Restoration of Buildings and Monuments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rbm-2016-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Restoration of Buildings and Monuments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rbm-2016-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要本文综述了微生物诱导碳酸钙沉淀(microinduced Calcium Carbonate Precipitation, MICCP)的生物矿化碳酸化过程,用于保护碳酸石碑和历史建筑材料。这一生物过程广泛发生在自然界中,微生物在其基本代谢活动中产生无机物。解释这种方法的第一个专利可以追溯到大约25年前。从那时起,不同的研究小组研究了替代方法和各种技术应用,以在变质的历史建筑和石碑表面提供保护性碳酸钙层,并通过这种生物沉积过程巩固其内部脆弱的结构。文章回顾了选定的文献,突出了开放的查询,并促进了对一系列问题的讨论,生产机制,应用技术,性能和与石材结构的结合。虽然关于这种重要方法的许多问题已经集中在已发表的资料中,但仍有相当大的可能性进行新的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioconsolidation of Stone Monuments. An Overview
Abstract This article reviews the carbonation process through biomineralization referred to as Microbial Induced Calcium Carbonate Precipitation (MICCP) for the conservation of carbonate stone monuments and historic building materials. This biological process widely occurs in nature as microbes produce inorganic materials within their basic metabolic activities. The first patent, which explained this method dates from approximately twenty-five years ago. Since then, different research groups have investigated substitute methodologies and various technical applications to provide a protective calcium carbonate layer on the surface of deteriorated historic buildings and stone monuments as well as to consolidate their inner weakened structure through this biodeposition process. The article reviews selected literature, highlights open queries and promotes discussion of a selection of issues, production mechanisms, application techniques, performance and bonding with stone structure. While many questions regarding this significant method have been focused in published sources, there are considerable possibilities for new research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative Analysis of Historic Mortars by Digital Image Analysis of Thin Sections Twelve Years of Energy Efficiency in Historic Buildings in Sweden Valuation of Medieval Churches; Taking Account of Laypersons’ Views Building Performance Evaluation – A Design Approach for Refurbishment of a Small Traditional Building in Scotland Guidance for Finding a Sustainable Balance between Energy Savings and Heritage Preservation When Retrofitting Heritage Buildings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1