{"title":"基于概率假设密度滤波的MIMO雷达目标跟踪","authors":"J. D. Glass, A. Lanterman","doi":"10.1109/AERO.2012.6187208","DOIUrl":null,"url":null,"abstract":"Target tracking in a widely spread multiple input multiple output (MIMO) radar system requires joint processing of several measurements from multiple sensors. The probability hypothesis density (PHD) filter provides a promising framework to process these measurements, since it does not require any measurement-to-track associations. Furthermore, the PHD filter naturally handles a multi-target environment because of the lack of explicit data association. We implement a PHD filter in the GTRI/ONR MIMO Benchmark, and compare results against the Benchmark's default solution. We assume a linear Gaussian target model so that the posterior target intensity at any time step is a Gaussian mixture (GM). Under this assumption, the PHD filter has closed-form recursions and target state extraction is simplified. This paper focuses on our implementation of the GM-PHD filter in the MIMO Benchmark, along with practical issues such as track labeling and applying the filter for the case of multiple sensors.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":"38 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"MIMO radar target tracking using the probability hypothesis density filter\",\"authors\":\"J. D. Glass, A. Lanterman\",\"doi\":\"10.1109/AERO.2012.6187208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target tracking in a widely spread multiple input multiple output (MIMO) radar system requires joint processing of several measurements from multiple sensors. The probability hypothesis density (PHD) filter provides a promising framework to process these measurements, since it does not require any measurement-to-track associations. Furthermore, the PHD filter naturally handles a multi-target environment because of the lack of explicit data association. We implement a PHD filter in the GTRI/ONR MIMO Benchmark, and compare results against the Benchmark's default solution. We assume a linear Gaussian target model so that the posterior target intensity at any time step is a Gaussian mixture (GM). Under this assumption, the PHD filter has closed-form recursions and target state extraction is simplified. This paper focuses on our implementation of the GM-PHD filter in the MIMO Benchmark, along with practical issues such as track labeling and applying the filter for the case of multiple sensors.\",\"PeriodicalId\":6421,\"journal\":{\"name\":\"2012 IEEE Aerospace Conference\",\"volume\":\"38 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2012.6187208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MIMO radar target tracking using the probability hypothesis density filter
Target tracking in a widely spread multiple input multiple output (MIMO) radar system requires joint processing of several measurements from multiple sensors. The probability hypothesis density (PHD) filter provides a promising framework to process these measurements, since it does not require any measurement-to-track associations. Furthermore, the PHD filter naturally handles a multi-target environment because of the lack of explicit data association. We implement a PHD filter in the GTRI/ONR MIMO Benchmark, and compare results against the Benchmark's default solution. We assume a linear Gaussian target model so that the posterior target intensity at any time step is a Gaussian mixture (GM). Under this assumption, the PHD filter has closed-form recursions and target state extraction is simplified. This paper focuses on our implementation of the GM-PHD filter in the MIMO Benchmark, along with practical issues such as track labeling and applying the filter for the case of multiple sensors.