{"title":"通过定性和定量(QQ)控制图监控雾制造的运行时间指标","authors":"Yifu Li, Lening Wang, Dongyoon Lee, R. Jin","doi":"10.1145/3501262","DOIUrl":null,"url":null,"abstract":"Fog manufacturing combines Fog and Cloud computing in a manufacturing network to provide efficient data analytics and support real-time decision-making. Detecting anomalies, including imbalanced computational workloads and cyber-attacks, is critical to ensure reliable and responsive computation services. However, such anomalies often concur with dynamic offloading events where computation tasks are migrated from well-occupied Fog nodes to less-occupied ones to reduce the overall computation time latency and improve the throughput. Such concurrences jointly affect the system behaviors, which makes anomaly detection inaccurate. We propose a qualitative and quantitative (QQ) control chart to monitor system anomalies through identifying the changes of monitored runtime metric relationship (quantitative variables) under the presence of dynamic offloading (qualitative variable) using a risk-adjusted monitoring framework. Both the simulation and Fog manufacturing case studies show the advantage of the proposed method compared with the existing literature under the dynamic offloading influence.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"77 1","pages":"1 - 19"},"PeriodicalIF":3.5000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring Runtime Metrics of Fog Manufacturing via a Qualitative and Quantitative (QQ) Control Chart\",\"authors\":\"Yifu Li, Lening Wang, Dongyoon Lee, R. Jin\",\"doi\":\"10.1145/3501262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fog manufacturing combines Fog and Cloud computing in a manufacturing network to provide efficient data analytics and support real-time decision-making. Detecting anomalies, including imbalanced computational workloads and cyber-attacks, is critical to ensure reliable and responsive computation services. However, such anomalies often concur with dynamic offloading events where computation tasks are migrated from well-occupied Fog nodes to less-occupied ones to reduce the overall computation time latency and improve the throughput. Such concurrences jointly affect the system behaviors, which makes anomaly detection inaccurate. We propose a qualitative and quantitative (QQ) control chart to monitor system anomalies through identifying the changes of monitored runtime metric relationship (quantitative variables) under the presence of dynamic offloading (qualitative variable) using a risk-adjusted monitoring framework. Both the simulation and Fog manufacturing case studies show the advantage of the proposed method compared with the existing literature under the dynamic offloading influence.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":\"77 1\",\"pages\":\"1 - 19\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3501262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Monitoring Runtime Metrics of Fog Manufacturing via a Qualitative and Quantitative (QQ) Control Chart
Fog manufacturing combines Fog and Cloud computing in a manufacturing network to provide efficient data analytics and support real-time decision-making. Detecting anomalies, including imbalanced computational workloads and cyber-attacks, is critical to ensure reliable and responsive computation services. However, such anomalies often concur with dynamic offloading events where computation tasks are migrated from well-occupied Fog nodes to less-occupied ones to reduce the overall computation time latency and improve the throughput. Such concurrences jointly affect the system behaviors, which makes anomaly detection inaccurate. We propose a qualitative and quantitative (QQ) control chart to monitor system anomalies through identifying the changes of monitored runtime metric relationship (quantitative variables) under the presence of dynamic offloading (qualitative variable) using a risk-adjusted monitoring framework. Both the simulation and Fog manufacturing case studies show the advantage of the proposed method compared with the existing literature under the dynamic offloading influence.