{"title":"从原子到生理学:如何才能真正理解炎性小体","authors":"F. Schmidt","doi":"10.1113/JP277027","DOIUrl":null,"url":null,"abstract":"Rapid inflammatory responses to cytosolic threats are mediated by inflammasomes – large macromolecular signalling complexes that control the activation of the pro‐inflammatory cytokines interleukin (IL)‐1β and IL‐18, as well as cell death by pyroptosis. Different inflammasome sensors are activated by diverse direct and indirect signals, and subsequently nucleate the polymerization of the adaptor molecule ASC to form signalling platforms macroscopically observed as ASC specks. Caspase‐1 is autocatalytically activated at these sites and subsequently matures pro‐inflammatory cytokines and the pore‐forming effector molecule gasdermin D. While most molecules and basic assembly principles have been deduced from reductionist experimental systems, we still lack fundamental information on the structure and regulation of these complexes in their physiological environment and in the interplay with other signalling pathways. In this review, novel experimental approaches are proposed, including some that rely on nanobodies and single domain antibodies, to understand inflammasome assembly and regulation in the context of the relevant tissues or cells.","PeriodicalId":22512,"journal":{"name":"The Japanese journal of physiology","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"From atoms to physiology: what it takes to really understand inflammasomes\",\"authors\":\"F. Schmidt\",\"doi\":\"10.1113/JP277027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid inflammatory responses to cytosolic threats are mediated by inflammasomes – large macromolecular signalling complexes that control the activation of the pro‐inflammatory cytokines interleukin (IL)‐1β and IL‐18, as well as cell death by pyroptosis. Different inflammasome sensors are activated by diverse direct and indirect signals, and subsequently nucleate the polymerization of the adaptor molecule ASC to form signalling platforms macroscopically observed as ASC specks. Caspase‐1 is autocatalytically activated at these sites and subsequently matures pro‐inflammatory cytokines and the pore‐forming effector molecule gasdermin D. While most molecules and basic assembly principles have been deduced from reductionist experimental systems, we still lack fundamental information on the structure and regulation of these complexes in their physiological environment and in the interplay with other signalling pathways. In this review, novel experimental approaches are proposed, including some that rely on nanobodies and single domain antibodies, to understand inflammasome assembly and regulation in the context of the relevant tissues or cells.\",\"PeriodicalId\":22512,\"journal\":{\"name\":\"The Japanese journal of physiology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Japanese journal of physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1113/JP277027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Japanese journal of physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1113/JP277027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From atoms to physiology: what it takes to really understand inflammasomes
Rapid inflammatory responses to cytosolic threats are mediated by inflammasomes – large macromolecular signalling complexes that control the activation of the pro‐inflammatory cytokines interleukin (IL)‐1β and IL‐18, as well as cell death by pyroptosis. Different inflammasome sensors are activated by diverse direct and indirect signals, and subsequently nucleate the polymerization of the adaptor molecule ASC to form signalling platforms macroscopically observed as ASC specks. Caspase‐1 is autocatalytically activated at these sites and subsequently matures pro‐inflammatory cytokines and the pore‐forming effector molecule gasdermin D. While most molecules and basic assembly principles have been deduced from reductionist experimental systems, we still lack fundamental information on the structure and regulation of these complexes in their physiological environment and in the interplay with other signalling pathways. In this review, novel experimental approaches are proposed, including some that rely on nanobodies and single domain antibodies, to understand inflammasome assembly and regulation in the context of the relevant tissues or cells.