双边交错康托分形挡板微混合器的数值研究

IF 1 4区 工程技术 Q4 CHEMISTRY, MULTIDISCIPLINARY Iranian Journal of Chemistry & Chemical Engineering-international English Edition Pub Date : 2021-09-01 DOI:10.30492/IJCCE.2021.527558.4664
Xueye Chen, Honglin Lv
{"title":"双边交错康托分形挡板微混合器的数值研究","authors":"Xueye Chen, Honglin Lv","doi":"10.30492/IJCCE.2021.527558.4664","DOIUrl":null,"url":null,"abstract":"Changing the structure of microchannel or setting obstacles in microchannel has become an effective way to improve the mixing performance of passive micromixer. Here, we design a three-dimensional micromixer with fractal obstacles based on Cantor fractal principle. The effect of fractal obstacle level, micromixer height, spacing between fractal obstacles and different Re (Reynold number) on the mixing efficiency are studied. Some valuable conclusions are obtained. The micromixer with quadratic fractal obstacles has better mixing efficiency than the micromixer with primary fractal obstacles. With the increase of the micromixer height, the effective folding area of the fluid can be increased. When the spacing between the fractal barriers is 0µm, the mixing efficiency of the micromixer is better. The mixing efficiency of all micromixers can reach more than 90% at Re is less 0.1 or more than 40. When Re is 70 and 100, the fluid convection in the micromixer is very strong. Finally, a best micromixer CSM600(Cantor structure micromixer with height 600µm) is obtained. The mixing effect is superior to other micromixers under any conditions.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"35 6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical study on bilateral stagger Cantor fractal baffles micromixer\",\"authors\":\"Xueye Chen, Honglin Lv\",\"doi\":\"10.30492/IJCCE.2021.527558.4664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changing the structure of microchannel or setting obstacles in microchannel has become an effective way to improve the mixing performance of passive micromixer. Here, we design a three-dimensional micromixer with fractal obstacles based on Cantor fractal principle. The effect of fractal obstacle level, micromixer height, spacing between fractal obstacles and different Re (Reynold number) on the mixing efficiency are studied. Some valuable conclusions are obtained. The micromixer with quadratic fractal obstacles has better mixing efficiency than the micromixer with primary fractal obstacles. With the increase of the micromixer height, the effective folding area of the fluid can be increased. When the spacing between the fractal barriers is 0µm, the mixing efficiency of the micromixer is better. The mixing efficiency of all micromixers can reach more than 90% at Re is less 0.1 or more than 40. When Re is 70 and 100, the fluid convection in the micromixer is very strong. Finally, a best micromixer CSM600(Cantor structure micromixer with height 600µm) is obtained. The mixing effect is superior to other micromixers under any conditions.\",\"PeriodicalId\":14572,\"journal\":{\"name\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"volume\":\"35 6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30492/IJCCE.2021.527558.4664\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.527558.4664","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

改变微通道结构或在微通道中设置障碍物已成为提高无源微混合器混合性能的有效途径。本文基于康托分形原理设计了三维分形障碍物微混合器。研究了分形障碍物水平、微混合器高度、分形障碍物间距和雷诺数对混合效率的影响。得到了一些有价值的结论。具有二次分形障碍物的微混合器比具有一次分形障碍物的微混合器具有更好的混合效率。随着微混合器高度的增加,流体的有效折叠面积增大。当分形屏障间距为0µm时,微混合器的混合效率较好。在Re小于0.1或大于40时,所有微混合器的混合效率均可达到90%以上。Re为70和100时,微混合器内流体对流非常强。最后,得到了最佳微混合器CSM600(高度600µm的康托结构微混合器)。在任何条件下,混合效果都优于其他微型混合器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical study on bilateral stagger Cantor fractal baffles micromixer
Changing the structure of microchannel or setting obstacles in microchannel has become an effective way to improve the mixing performance of passive micromixer. Here, we design a three-dimensional micromixer with fractal obstacles based on Cantor fractal principle. The effect of fractal obstacle level, micromixer height, spacing between fractal obstacles and different Re (Reynold number) on the mixing efficiency are studied. Some valuable conclusions are obtained. The micromixer with quadratic fractal obstacles has better mixing efficiency than the micromixer with primary fractal obstacles. With the increase of the micromixer height, the effective folding area of the fluid can be increased. When the spacing between the fractal barriers is 0µm, the mixing efficiency of the micromixer is better. The mixing efficiency of all micromixers can reach more than 90% at Re is less 0.1 or more than 40. When Re is 70 and 100, the fluid convection in the micromixer is very strong. Finally, a best micromixer CSM600(Cantor structure micromixer with height 600µm) is obtained. The mixing effect is superior to other micromixers under any conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
22.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.
期刊最新文献
Thermodynamic Modeling the Solubility of CO2 in the Binary and Three-Component Aqua System of Methyldiethanolamine (MDEA) Using the N-Wilson-NRF The high performance of diethylhydroxylamine in comparison with hydrazine for the removal of dissolved oxygen from boilers of power plant Acoustofluidic separation of microparticles: a numerical study Morpho-structural characterization and electrophoretic deposition of xonotlite obtained by a hydrothermal method A 2E Analysis and Optimization of a Hybrid Solar Humidification-Dehumidification Water Desalination System and Solar Water Heater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1