{"title":"近程FMCW声纳距离估计方法","authors":"Young-Kwang Seo, Wan-Jin Kim, Hyoung-Nam Kim","doi":"10.2316/P.2017.848-046","DOIUrl":null,"url":null,"abstract":"We propose a range estimation method for a short-range frequency-modulated continuous wave (FMCW) sonar. Due to the slower sound wave and the greater Doppler effect of the FMCW sonar, the beat frequency of the FMCW sonar cannot keep the constant duration unlike the beat frequency of the FMCW radar. To cope with the drawback of the FMCW sonar, in the proposed method the rising edge and the falling edge of the beat frequency are utilized. This leads us to normally estimate the range of a high-speed underwater vehicle in short-range situation. Simulation results show that the proposed method can estimate the range from the measurements where the Doppler effect is exactly reflected according to the maneuver scenario of high-speed underwater vehicles.","PeriodicalId":49801,"journal":{"name":"Modeling Identification and Control","volume":"393 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Range Estimation Method in a Short-Range FMCW Sonar\",\"authors\":\"Young-Kwang Seo, Wan-Jin Kim, Hyoung-Nam Kim\",\"doi\":\"10.2316/P.2017.848-046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a range estimation method for a short-range frequency-modulated continuous wave (FMCW) sonar. Due to the slower sound wave and the greater Doppler effect of the FMCW sonar, the beat frequency of the FMCW sonar cannot keep the constant duration unlike the beat frequency of the FMCW radar. To cope with the drawback of the FMCW sonar, in the proposed method the rising edge and the falling edge of the beat frequency are utilized. This leads us to normally estimate the range of a high-speed underwater vehicle in short-range situation. Simulation results show that the proposed method can estimate the range from the measurements where the Doppler effect is exactly reflected according to the maneuver scenario of high-speed underwater vehicles.\",\"PeriodicalId\":49801,\"journal\":{\"name\":\"Modeling Identification and Control\",\"volume\":\"393 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modeling Identification and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2316/P.2017.848-046\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modeling Identification and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2316/P.2017.848-046","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Range Estimation Method in a Short-Range FMCW Sonar
We propose a range estimation method for a short-range frequency-modulated continuous wave (FMCW) sonar. Due to the slower sound wave and the greater Doppler effect of the FMCW sonar, the beat frequency of the FMCW sonar cannot keep the constant duration unlike the beat frequency of the FMCW radar. To cope with the drawback of the FMCW sonar, in the proposed method the rising edge and the falling edge of the beat frequency are utilized. This leads us to normally estimate the range of a high-speed underwater vehicle in short-range situation. Simulation results show that the proposed method can estimate the range from the measurements where the Doppler effect is exactly reflected according to the maneuver scenario of high-speed underwater vehicles.
期刊介绍:
The aim of MIC is to present Nordic research activities in the field of modeling, identification and control to the international scientific community. Historically, the articles published in MIC presented the results of research carried out in Norway, or sponsored primarily by a Norwegian institution. Since 2009 the journal also accepts papers from the other Nordic countries.