近似函数记忆法

Priya Arundhati, S. K. Jena, S. Pani
{"title":"近似函数记忆法","authors":"Priya Arundhati, S. K. Jena, S. Pani","doi":"10.1002/cpe.7204","DOIUrl":null,"url":null,"abstract":"Function memoization is an optimization technique that reduces a function call overhead when the same input appears again. A table that stores the previous result is searched and used to skip the repeated computation. This way, it increases the performance of the function call. In this article, we propose a software approach of function memoization to improve computing efficiency by bypassing the execution of the function implemented using approximate computing techniques. Searching overhead is a primary concern in any memoization technique proposed so far. In traditional function memoization, the input arguments are first searched in the look‐up table (LUT) for an exact match, and the corresponding result is extracted for further use. But, in this article, a decision‐making rule is proposed to help us decide whether to search the LUT or go for the actual computation. This decision‐making model is implemented through Bloom filter and Cantor's pairing function. Because Bloom filter sometimes produces false‐positive results, we suggest a simple approximation technique that searches the LUT for an approximate match rather than an exact match. The proposed model also contains a bypass algorithm implemented through C++ code that identifies the trivial computations from the input argument of the candidate function. By this, we can avoid the actual calculation and generate the result directly. Here, trivial computation identifies one or more input arguments that are either 0 or ±1$$ \\pm 1 $$ . To analyze the effectiveness of our proposed technique, we conducted several experiments using the benchmarks from the AxBench suite. We found that our result outperforms some of the methods proposed so far in terms of energy consumption and quality of results, particularly in image processing applications.","PeriodicalId":10584,"journal":{"name":"Concurrency and Computation: Practice and Experience","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximate function memoization\",\"authors\":\"Priya Arundhati, S. K. Jena, S. Pani\",\"doi\":\"10.1002/cpe.7204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Function memoization is an optimization technique that reduces a function call overhead when the same input appears again. A table that stores the previous result is searched and used to skip the repeated computation. This way, it increases the performance of the function call. In this article, we propose a software approach of function memoization to improve computing efficiency by bypassing the execution of the function implemented using approximate computing techniques. Searching overhead is a primary concern in any memoization technique proposed so far. In traditional function memoization, the input arguments are first searched in the look‐up table (LUT) for an exact match, and the corresponding result is extracted for further use. But, in this article, a decision‐making rule is proposed to help us decide whether to search the LUT or go for the actual computation. This decision‐making model is implemented through Bloom filter and Cantor's pairing function. Because Bloom filter sometimes produces false‐positive results, we suggest a simple approximation technique that searches the LUT for an approximate match rather than an exact match. The proposed model also contains a bypass algorithm implemented through C++ code that identifies the trivial computations from the input argument of the candidate function. By this, we can avoid the actual calculation and generate the result directly. Here, trivial computation identifies one or more input arguments that are either 0 or ±1$$ \\\\pm 1 $$ . To analyze the effectiveness of our proposed technique, we conducted several experiments using the benchmarks from the AxBench suite. We found that our result outperforms some of the methods proposed so far in terms of energy consumption and quality of results, particularly in image processing applications.\",\"PeriodicalId\":10584,\"journal\":{\"name\":\"Concurrency and Computation: Practice and Experience\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation: Practice and Experience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cpe.7204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation: Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpe.7204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

函数记忆是一种优化技术,可以在再次出现相同输入时减少函数调用开销。搜索存储先前结果的表,并使用该表跳过重复计算。这样可以提高函数调用的性能。在本文中,我们提出了一种函数记忆的软件方法,通过绕过使用近似计算技术实现的函数的执行来提高计算效率。搜索开销是目前提出的任何记忆技术的主要关注点。在传统的函数记忆中,输入参数首先在查找表(LUT)中搜索精确匹配,然后提取相应的结果以供进一步使用。但是,在本文中,提出了一个决策规则来帮助我们决定是搜索LUT还是进行实际计算。该决策模型通过Bloom滤波和Cantor配对函数实现。由于布隆过滤器有时会产生假阳性结果,我们建议使用一种简单的近似技术,在LUT中搜索近似匹配而不是精确匹配。建议的模型还包含一个通过c++代码实现的绕过算法,该算法从候选函数的输入参数中识别琐碎的计算。这样可以避免实际计算,直接生成结果。这里,简单的计算识别一个或多个输入参数,它们要么为0,要么为±1 $$ \pm 1 $$。为了分析我们提出的技术的有效性,我们使用来自AxBench套件的基准测试进行了几个实验。我们发现我们的结果在能量消耗和结果质量方面优于目前提出的一些方法,特别是在图像处理应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximate function memoization
Function memoization is an optimization technique that reduces a function call overhead when the same input appears again. A table that stores the previous result is searched and used to skip the repeated computation. This way, it increases the performance of the function call. In this article, we propose a software approach of function memoization to improve computing efficiency by bypassing the execution of the function implemented using approximate computing techniques. Searching overhead is a primary concern in any memoization technique proposed so far. In traditional function memoization, the input arguments are first searched in the look‐up table (LUT) for an exact match, and the corresponding result is extracted for further use. But, in this article, a decision‐making rule is proposed to help us decide whether to search the LUT or go for the actual computation. This decision‐making model is implemented through Bloom filter and Cantor's pairing function. Because Bloom filter sometimes produces false‐positive results, we suggest a simple approximation technique that searches the LUT for an approximate match rather than an exact match. The proposed model also contains a bypass algorithm implemented through C++ code that identifies the trivial computations from the input argument of the candidate function. By this, we can avoid the actual calculation and generate the result directly. Here, trivial computation identifies one or more input arguments that are either 0 or ±1$$ \pm 1 $$ . To analyze the effectiveness of our proposed technique, we conducted several experiments using the benchmarks from the AxBench suite. We found that our result outperforms some of the methods proposed so far in terms of energy consumption and quality of results, particularly in image processing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time‐based DDoS attack detection through hybrid LSTM‐CNN model architectures: An investigation of many‐to‐one and many‐to‐many approaches Distributed low‐latency broadcast scheduling for multi‐channel duty‐cycled wireless IoT networks Open‐domain event schema induction via weighted attentive hypergraph neural network Fused GEMMs towards an efficient GPU implementation of the ADER‐DG method in SeisSol Simulation method for infrared radiation transmission characteristics of typical ship targets based on optical remote sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1