{"title":"生物/非生物应激对人表皮角质形成细胞的影响","authors":"S. M. Motevalli, Fateme Mirzajani","doi":"10.33945/sami/pcbr.2019.2.2.2","DOIUrl":null,"url":null,"abstract":"Human epidermal keratinocyte cells are the first defence blocks against the aggressive agents such as pathogens and xenobiotic materials. Synthesis process of the cellular proteins can be affected by abiotic stresses (aBS like: SiO2 nanoparticles) and biotic stresses (BS like: Virus), leading to the alteration of consumed energy profiles of proteins. The consumed energy profile of each protein was calculated based on their consumed ATP during the amino acids synthesizing procedure. Cells consumed more ATP, more energy, to synthesize more proteins under BS conditions compare to aBS conditions. Our results suggested that, the cells infected by pathogens are tend to survive longer than the treated cells by xenobiotic materials. Our data analysis revealed that the most energy reduction took place under aBS conditions. So, aBS could have severe effect on energy production pathways and decrease the energy source of cells. Moreover, the results demonstrated that the complexity of cellular protein networks under aBS conditions were more than BS conditions. It seems the cellular energy reduction under aBS conditions is one of the important factors in cell death. In addition, the position of proteins in the protein network was another important factor that should be carefully considered.","PeriodicalId":20668,"journal":{"name":"Progress in Chemical and Biochemical Research","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biotic / Abiotic Stress Influences on Human Epidermal Keratinocyte Cells\",\"authors\":\"S. M. Motevalli, Fateme Mirzajani\",\"doi\":\"10.33945/sami/pcbr.2019.2.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human epidermal keratinocyte cells are the first defence blocks against the aggressive agents such as pathogens and xenobiotic materials. Synthesis process of the cellular proteins can be affected by abiotic stresses (aBS like: SiO2 nanoparticles) and biotic stresses (BS like: Virus), leading to the alteration of consumed energy profiles of proteins. The consumed energy profile of each protein was calculated based on their consumed ATP during the amino acids synthesizing procedure. Cells consumed more ATP, more energy, to synthesize more proteins under BS conditions compare to aBS conditions. Our results suggested that, the cells infected by pathogens are tend to survive longer than the treated cells by xenobiotic materials. Our data analysis revealed that the most energy reduction took place under aBS conditions. So, aBS could have severe effect on energy production pathways and decrease the energy source of cells. Moreover, the results demonstrated that the complexity of cellular protein networks under aBS conditions were more than BS conditions. It seems the cellular energy reduction under aBS conditions is one of the important factors in cell death. In addition, the position of proteins in the protein network was another important factor that should be carefully considered.\",\"PeriodicalId\":20668,\"journal\":{\"name\":\"Progress in Chemical and Biochemical Research\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Chemical and Biochemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33945/sami/pcbr.2019.2.2.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Chemical and Biochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33945/sami/pcbr.2019.2.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biotic / Abiotic Stress Influences on Human Epidermal Keratinocyte Cells
Human epidermal keratinocyte cells are the first defence blocks against the aggressive agents such as pathogens and xenobiotic materials. Synthesis process of the cellular proteins can be affected by abiotic stresses (aBS like: SiO2 nanoparticles) and biotic stresses (BS like: Virus), leading to the alteration of consumed energy profiles of proteins. The consumed energy profile of each protein was calculated based on their consumed ATP during the amino acids synthesizing procedure. Cells consumed more ATP, more energy, to synthesize more proteins under BS conditions compare to aBS conditions. Our results suggested that, the cells infected by pathogens are tend to survive longer than the treated cells by xenobiotic materials. Our data analysis revealed that the most energy reduction took place under aBS conditions. So, aBS could have severe effect on energy production pathways and decrease the energy source of cells. Moreover, the results demonstrated that the complexity of cellular protein networks under aBS conditions were more than BS conditions. It seems the cellular energy reduction under aBS conditions is one of the important factors in cell death. In addition, the position of proteins in the protein network was another important factor that should be carefully considered.