基于人工神经网络的桥墩收缩流预测

S. Atabay, Jamal A. Abdalla, G. Seckin, M. Mortula
{"title":"基于人工神经网络的桥墩收缩流预测","authors":"S. Atabay, Jamal A. Abdalla, G. Seckin, M. Mortula","doi":"10.1109/ICMSAO.2011.5775538","DOIUrl":null,"url":null,"abstract":"Bridge constriction in channels usually causes afflux which results in increase in backwater level well above the normal level and may possibly result in overflow on the flood plain surrounding the channel during flooding period. This paper uses Artificial Neural Network to predict the afflux based on the parameters including coefficient of frictions of main channel (nmc) and of floodplain (nfp), bridge width (b) and flow discharge (Q). A Multi-Layer Perceptron (MLP) ANN is used to predict the afflux using these parameters. The training and testing data are the result of experimental investigation. It is observed that the afflux values predicted by the ANN model are very accurate compared to the experimentally measured values with a Normalized Mean Square Error (NMSE) of 0.002 and a Correlation Coefficient of 0.999. The developed ANN model can be used safely to conduct a parametric study to investigate the influence of the parameters nmc, nfp, b and Q on the afflux of a bridge constriction with piers.","PeriodicalId":6383,"journal":{"name":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","volume":"28 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of afflux of bridge constriction with piers using Artificial Neural Network\",\"authors\":\"S. Atabay, Jamal A. Abdalla, G. Seckin, M. Mortula\",\"doi\":\"10.1109/ICMSAO.2011.5775538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bridge constriction in channels usually causes afflux which results in increase in backwater level well above the normal level and may possibly result in overflow on the flood plain surrounding the channel during flooding period. This paper uses Artificial Neural Network to predict the afflux based on the parameters including coefficient of frictions of main channel (nmc) and of floodplain (nfp), bridge width (b) and flow discharge (Q). A Multi-Layer Perceptron (MLP) ANN is used to predict the afflux using these parameters. The training and testing data are the result of experimental investigation. It is observed that the afflux values predicted by the ANN model are very accurate compared to the experimentally measured values with a Normalized Mean Square Error (NMSE) of 0.002 and a Correlation Coefficient of 0.999. The developed ANN model can be used safely to conduct a parametric study to investigate the influence of the parameters nmc, nfp, b and Q on the afflux of a bridge constriction with piers.\",\"PeriodicalId\":6383,\"journal\":{\"name\":\"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization\",\"volume\":\"28 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMSAO.2011.5775538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSAO.2011.5775538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

河道中的桥梁收缩通常会引起涌水,导致回水水位远远超过正常水平,并可能导致洪水期间河道周围洪泛区的溢流。基于主河道摩擦系数(nmc)、河漫滩摩擦系数(nfp)、桥面宽度(b)、流量(Q)等参数,采用人工神经网络对流量进行预测,并采用多层感知器(MLP)人工神经网络对流量进行预测。训练和测试数据是实验调查的结果。结果表明,人工神经网络模型预测的入流值与实验实测值比较准确,归一化均方误差(NMSE)为0.002,相关系数为0.999。所建立的人工神经网络模型可以安全地用于参数化研究nmc、nfp、b和Q参数对带有桥墩的桥缩流的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of afflux of bridge constriction with piers using Artificial Neural Network
Bridge constriction in channels usually causes afflux which results in increase in backwater level well above the normal level and may possibly result in overflow on the flood plain surrounding the channel during flooding period. This paper uses Artificial Neural Network to predict the afflux based on the parameters including coefficient of frictions of main channel (nmc) and of floodplain (nfp), bridge width (b) and flow discharge (Q). A Multi-Layer Perceptron (MLP) ANN is used to predict the afflux using these parameters. The training and testing data are the result of experimental investigation. It is observed that the afflux values predicted by the ANN model are very accurate compared to the experimentally measured values with a Normalized Mean Square Error (NMSE) of 0.002 and a Correlation Coefficient of 0.999. The developed ANN model can be used safely to conduct a parametric study to investigate the influence of the parameters nmc, nfp, b and Q on the afflux of a bridge constriction with piers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact and Scope of Electric Power Generation Demand Using Renewable Energy Resources Due to COVID-19 Introductory Lectures on Convex Optimization - A Basic Course Development of energy harvesting device using piezoelectric material Modelling and simulation of solar chimney power plant performances in southern region of Algeria A sequential approach for fault detection and identification of vehicles' ultrasonic parking sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1