{"title":"基于惯性和Hessian驱动阻尼的一阶优化方法中微扰的影响","authors":"H. Attouch, J. Fadili, V. Kungurtsev","doi":"10.3934/eect.2022022","DOIUrl":null,"url":null,"abstract":"Second-order continuous-time dissipative dynamical systems with viscous and Hessian driven damping have inspired effective first-order algorithms for solving convex optimization problems. While preserving the fast convergence properties of the Nesterov-type acceleration, the Hessian driven damping makes it possible to significantly attenuate the oscillations. To study the stability of these algorithms with respect to perturbations, we analyze the behaviour of the corresponding continuous systems when the gradient computation is subject to exogenous additive errors. We provide a quantitative analysis of the asymptotic behaviour of two types of systems, those with implicit and explicit Hessian driven damping. We consider convex, strongly convex, and non-smooth objective functions defined on a real Hilbert space and show that, depending on the formulation, different integrability conditions on the perturbations are sufficient to maintain the convergence rates of the systems. We highlight the differences between the implicit and explicit Hessian damping, and in particular point out that the assumptions on the objective and perturbations needed in the implicit case are more stringent than in the explicit case.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the effect of perturbations in first-order optimization methods with inertia and Hessian driven damping\",\"authors\":\"H. Attouch, J. Fadili, V. Kungurtsev\",\"doi\":\"10.3934/eect.2022022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Second-order continuous-time dissipative dynamical systems with viscous and Hessian driven damping have inspired effective first-order algorithms for solving convex optimization problems. While preserving the fast convergence properties of the Nesterov-type acceleration, the Hessian driven damping makes it possible to significantly attenuate the oscillations. To study the stability of these algorithms with respect to perturbations, we analyze the behaviour of the corresponding continuous systems when the gradient computation is subject to exogenous additive errors. We provide a quantitative analysis of the asymptotic behaviour of two types of systems, those with implicit and explicit Hessian driven damping. We consider convex, strongly convex, and non-smooth objective functions defined on a real Hilbert space and show that, depending on the formulation, different integrability conditions on the perturbations are sufficient to maintain the convergence rates of the systems. We highlight the differences between the implicit and explicit Hessian damping, and in particular point out that the assumptions on the objective and perturbations needed in the implicit case are more stringent than in the explicit case.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2022022\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On the effect of perturbations in first-order optimization methods with inertia and Hessian driven damping
Second-order continuous-time dissipative dynamical systems with viscous and Hessian driven damping have inspired effective first-order algorithms for solving convex optimization problems. While preserving the fast convergence properties of the Nesterov-type acceleration, the Hessian driven damping makes it possible to significantly attenuate the oscillations. To study the stability of these algorithms with respect to perturbations, we analyze the behaviour of the corresponding continuous systems when the gradient computation is subject to exogenous additive errors. We provide a quantitative analysis of the asymptotic behaviour of two types of systems, those with implicit and explicit Hessian driven damping. We consider convex, strongly convex, and non-smooth objective functions defined on a real Hilbert space and show that, depending on the formulation, different integrability conditions on the perturbations are sufficient to maintain the convergence rates of the systems. We highlight the differences between the implicit and explicit Hessian damping, and in particular point out that the assumptions on the objective and perturbations needed in the implicit case are more stringent than in the explicit case.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.