随机游走博弈中的策略和首次吸收时间

M. Krivonosov, S. Tikhomirov
{"title":"随机游走博弈中的策略和首次吸收时间","authors":"M. Krivonosov, S. Tikhomirov","doi":"10.18500/0869-6632-003043","DOIUrl":null,"url":null,"abstract":"Purpose of this work is to determine the average time to reach the boundaries, as well as to identify the strategy in the game between two players, controlling point movements on the finite square lattice using an independent choice of strategies. One player wants to survive, i. e., to stay within the interior of the square, as long as possible, while his opponent wants to reach the absorbing boundary. A game starts from the center of the square and every next movement of the point is determined by independent strategy choices made by the players. The value of the game is the survival time that is the number of steps before the absorption happens. In addition we present series of experiments involving both human players and an autonomous agent (bot) and analysis of the survival time probability distributions. Methods. In this work, methods of the theory of absorbing Markov chains were used to analyze strategies and absorption times, as well as the Monte Carlo method to simulate trajectories. Additionally, a large-scale field experiment was conducted using the developed mobile application. Results. The players’ strategies are experimentally obtained for the cases of playing against an autonomous agent (bot), as well as human players against each other. A comparison with optimal strategies and a random walk is made: the difference between the experimental strategies and the optimal ones is shown, however, the resulting strategies show a much better result of games than a simple random walk. In addition, especially long-running games do not show the Markovian property in case of the simulation corresponding strategies. Conclusion. The sampled histograms indicate that the game-driven walks are more complex than a random walk on a finite lattice but it can be reproduced with a Markov Chain model.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies and first-absorption times in the random walk game\",\"authors\":\"M. Krivonosov, S. Tikhomirov\",\"doi\":\"10.18500/0869-6632-003043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose of this work is to determine the average time to reach the boundaries, as well as to identify the strategy in the game between two players, controlling point movements on the finite square lattice using an independent choice of strategies. One player wants to survive, i. e., to stay within the interior of the square, as long as possible, while his opponent wants to reach the absorbing boundary. A game starts from the center of the square and every next movement of the point is determined by independent strategy choices made by the players. The value of the game is the survival time that is the number of steps before the absorption happens. In addition we present series of experiments involving both human players and an autonomous agent (bot) and analysis of the survival time probability distributions. Methods. In this work, methods of the theory of absorbing Markov chains were used to analyze strategies and absorption times, as well as the Monte Carlo method to simulate trajectories. Additionally, a large-scale field experiment was conducted using the developed mobile application. Results. The players’ strategies are experimentally obtained for the cases of playing against an autonomous agent (bot), as well as human players against each other. A comparison with optimal strategies and a random walk is made: the difference between the experimental strategies and the optimal ones is shown, however, the resulting strategies show a much better result of games than a simple random walk. In addition, especially long-running games do not show the Markovian property in case of the simulation corresponding strategies. Conclusion. The sampled histograms indicate that the game-driven walks are more complex than a random walk on a finite lattice but it can be reproduced with a Markov Chain model.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-003043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是确定到达边界的平均时间,以及确定两个玩家之间的博弈策略,使用独立的策略选择来控制有限方格格上的点移动。一方想要生存,也就是说,尽可能长时间地呆在方格内部,而他的对手则想要到达吸收边界。游戏从方块的中心开始,每个点的下一步移动都是由玩家做出的独立策略选择决定的。游戏的价值是生存时间,即吸收发生前的步数。此外,我们提出了一系列涉及人类玩家和自主代理(bot)的实验,并分析了生存时间概率分布。方法。在这项工作中,吸收马尔可夫链理论的方法被用于分析策略和吸收时间,以及蒙特卡罗方法来模拟轨迹。此外,利用开发的移动应用程序进行了大规模的现场试验。结果。玩家的策略是通过实验获得的,无论是与自主智能体(bot)对抗,还是与人类玩家相互对抗。将最优策略与随机漫步进行了比较:实验策略与最优策略之间的差异得到了体现,但结果策略比简单随机漫步的博弈结果要好得多。此外,特别是长时间运行的游戏在模拟相应策略的情况下不表现出马尔可夫性。结论。抽样直方图表明,游戏驱动的行走比有限晶格上的随机行走更复杂,但它可以用马尔可夫链模型再现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategies and first-absorption times in the random walk game
Purpose of this work is to determine the average time to reach the boundaries, as well as to identify the strategy in the game between two players, controlling point movements on the finite square lattice using an independent choice of strategies. One player wants to survive, i. e., to stay within the interior of the square, as long as possible, while his opponent wants to reach the absorbing boundary. A game starts from the center of the square and every next movement of the point is determined by independent strategy choices made by the players. The value of the game is the survival time that is the number of steps before the absorption happens. In addition we present series of experiments involving both human players and an autonomous agent (bot) and analysis of the survival time probability distributions. Methods. In this work, methods of the theory of absorbing Markov chains were used to analyze strategies and absorption times, as well as the Monte Carlo method to simulate trajectories. Additionally, a large-scale field experiment was conducted using the developed mobile application. Results. The players’ strategies are experimentally obtained for the cases of playing against an autonomous agent (bot), as well as human players against each other. A comparison with optimal strategies and a random walk is made: the difference between the experimental strategies and the optimal ones is shown, however, the resulting strategies show a much better result of games than a simple random walk. In addition, especially long-running games do not show the Markovian property in case of the simulation corresponding strategies. Conclusion. The sampled histograms indicate that the game-driven walks are more complex than a random walk on a finite lattice but it can be reproduced with a Markov Chain model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
47
期刊介绍: Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.
期刊最新文献
80 years of Vladislav A. Tsarev 70 years of Sergey V. Gonchenko 40 years of Ilya V. Sysoev To the 85th anniversary of Dmitry Ivanovich Trubetskov On the anniversary of Sergei A. Kashchenko
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1