Jian Dai, Meihui Zhang, Gang Chen, Ju Fan, K. Ngiam, B. Ooi
{"title":"在医疗保健中使用神经网络的细粒度概念链接","authors":"Jian Dai, Meihui Zhang, Gang Chen, Ju Fan, K. Ngiam, B. Ooi","doi":"10.1145/3183713.3196907","DOIUrl":null,"url":null,"abstract":"To unlock the wealth of the healthcare data, we often need to link the real-world text snippets to the referred medical concepts described by the canonical descriptions. However, existing healthcare concept linking methods, such as dictionary-based and simple machine learning methods, are not effective due to the word discrepancy between the text snippet and the canonical concept description, and the overlapping concept meaning among the fine-grained concepts. To address these challenges, we propose a Neural Concept Linking (NCL) approach for accurate concept linking using systematically integrated neural networks. We call the novel neural network architecture as the COMposite AttentIonal encode-Decode neural network (COM-AID). COM-AID performs an encode-decode process that encodes a concept into a vector and decodes the vector into a text snippet with the help of two devised contexts. On the one hand, it injects the textual context into the neural network through the attention mechanism, so that the word discrepancy can be overcome from the semantic perspective. On the other hand, it incorporates the structural context into the neural network through the attention mechanism, so that minor concept meaning differences can be enlarged and effectively differentiated. Empirical studies on two real-world datasets confirm that the NCL produces accurate concept linking results and significantly outperforms state-of-the-art techniques.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Fine-grained Concept Linking using Neural Networks in Healthcare\",\"authors\":\"Jian Dai, Meihui Zhang, Gang Chen, Ju Fan, K. Ngiam, B. Ooi\",\"doi\":\"10.1145/3183713.3196907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To unlock the wealth of the healthcare data, we often need to link the real-world text snippets to the referred medical concepts described by the canonical descriptions. However, existing healthcare concept linking methods, such as dictionary-based and simple machine learning methods, are not effective due to the word discrepancy between the text snippet and the canonical concept description, and the overlapping concept meaning among the fine-grained concepts. To address these challenges, we propose a Neural Concept Linking (NCL) approach for accurate concept linking using systematically integrated neural networks. We call the novel neural network architecture as the COMposite AttentIonal encode-Decode neural network (COM-AID). COM-AID performs an encode-decode process that encodes a concept into a vector and decodes the vector into a text snippet with the help of two devised contexts. On the one hand, it injects the textual context into the neural network through the attention mechanism, so that the word discrepancy can be overcome from the semantic perspective. On the other hand, it incorporates the structural context into the neural network through the attention mechanism, so that minor concept meaning differences can be enlarged and effectively differentiated. Empirical studies on two real-world datasets confirm that the NCL produces accurate concept linking results and significantly outperforms state-of-the-art techniques.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3196907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3196907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fine-grained Concept Linking using Neural Networks in Healthcare
To unlock the wealth of the healthcare data, we often need to link the real-world text snippets to the referred medical concepts described by the canonical descriptions. However, existing healthcare concept linking methods, such as dictionary-based and simple machine learning methods, are not effective due to the word discrepancy between the text snippet and the canonical concept description, and the overlapping concept meaning among the fine-grained concepts. To address these challenges, we propose a Neural Concept Linking (NCL) approach for accurate concept linking using systematically integrated neural networks. We call the novel neural network architecture as the COMposite AttentIonal encode-Decode neural network (COM-AID). COM-AID performs an encode-decode process that encodes a concept into a vector and decodes the vector into a text snippet with the help of two devised contexts. On the one hand, it injects the textual context into the neural network through the attention mechanism, so that the word discrepancy can be overcome from the semantic perspective. On the other hand, it incorporates the structural context into the neural network through the attention mechanism, so that minor concept meaning differences can be enlarged and effectively differentiated. Empirical studies on two real-world datasets confirm that the NCL produces accurate concept linking results and significantly outperforms state-of-the-art techniques.