多微网系统的随机预测控制

N. Bazmohammadi, Ahmadreza Tahsiri, A. Anvari‐Moghaddam, J. Guerrero
{"title":"多微网系统的随机预测控制","authors":"N. Bazmohammadi, Ahmadreza Tahsiri, A. Anvari‐Moghaddam, J. Guerrero","doi":"10.1109/EEEIC.2018.8494353","DOIUrl":null,"url":null,"abstract":"This paper presents a stochastic predictive control algorithm for a number of microgrids connected to the same distribution system. Each microgrid includes a variety of distributed resources such as wind turbine, photo voltaic units, energy storage devices and loads. Considering the uncertainty of loads and renewable-based distributed resources, the power management problem is formulated in the framework of stochastic control. The microgrids operation are coupled through a joint probabilistic constraint which requires the power flow from utility to each microgrid limits to a pre-specified range. Utilizing probabilistic distribution function of uncertain variables, the deterministic counterpart of the problem is derived and a close-optimal solution of the problem is achieved. The Monte-Carlo simulation analysis is used to justify the robustness characteristics of the solution.","PeriodicalId":6563,"journal":{"name":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"141 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Stochastic Predictive Control of Multi-Microgrid Systems\",\"authors\":\"N. Bazmohammadi, Ahmadreza Tahsiri, A. Anvari‐Moghaddam, J. Guerrero\",\"doi\":\"10.1109/EEEIC.2018.8494353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a stochastic predictive control algorithm for a number of microgrids connected to the same distribution system. Each microgrid includes a variety of distributed resources such as wind turbine, photo voltaic units, energy storage devices and loads. Considering the uncertainty of loads and renewable-based distributed resources, the power management problem is formulated in the framework of stochastic control. The microgrids operation are coupled through a joint probabilistic constraint which requires the power flow from utility to each microgrid limits to a pre-specified range. Utilizing probabilistic distribution function of uncertain variables, the deterministic counterpart of the problem is derived and a close-optimal solution of the problem is achieved. The Monte-Carlo simulation analysis is used to justify the robustness characteristics of the solution.\",\"PeriodicalId\":6563,\"journal\":{\"name\":\"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"volume\":\"141 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2018.8494353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2018.8494353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文提出了连接到同一配电系统的多个微电网的随机预测控制算法。每个微电网包括各种分布式资源,如风力发电机组、光伏发电机组、储能设备和负载。考虑到负荷和可再生分布式资源的不确定性,在随机控制的框架下提出了电力管理问题。微电网运行通过联合概率约束耦合,该约束要求从公用事业到每个微电网的功率流限制在预先指定的范围内。利用不确定变量的概率分布函数,导出了问题的确定性对应物,得到了问题的近最优解。通过蒙特卡罗仿真分析验证了该方法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic Predictive Control of Multi-Microgrid Systems
This paper presents a stochastic predictive control algorithm for a number of microgrids connected to the same distribution system. Each microgrid includes a variety of distributed resources such as wind turbine, photo voltaic units, energy storage devices and loads. Considering the uncertainty of loads and renewable-based distributed resources, the power management problem is formulated in the framework of stochastic control. The microgrids operation are coupled through a joint probabilistic constraint which requires the power flow from utility to each microgrid limits to a pre-specified range. Utilizing probabilistic distribution function of uncertain variables, the deterministic counterpart of the problem is derived and a close-optimal solution of the problem is achieved. The Monte-Carlo simulation analysis is used to justify the robustness characteristics of the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future State Visualization in Power Grid Configurations of Modified SEPIC Converter with Switched Inductor Module (MSCsI) for Photovoltaic Application: Part-II Innovative Hybrid Energy Systems for Heading Towards NZEB Qualification for Existing Buildings Potential Use of Reservoirs for Mitigating Saline Intrusion in the Coastal Areas of Red River Delta Radiated Wideband IEMI: Coupling Model and Worst-Case Analysis for Smart Grid Wiring Harness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1