T. Hamidfar, A. Dmitriev, B. Magdan, P. Bianucci, M. Sumetsky
{"title":"超薄壁二氧化硅微毛细管的表面纳米轴向光子学研究","authors":"T. Hamidfar, A. Dmitriev, B. Magdan, P. Bianucci, M. Sumetsky","doi":"10.1109/IPCON.2017.8116101","DOIUrl":null,"url":null,"abstract":"We demonstrate SNAP microresonators fabricated in silica capillary fiber with ultrathin walls by local annealing with a focused CO2 laser and internal etching with hydrofluoric acid. We investigate the introduced capillary wall nonuniformity and demonstrate the feasibility of advanced microfluidic sensing with SNAP microresonators.","PeriodicalId":6657,"journal":{"name":"2017 IEEE Photonics Conference (IPC) Part II","volume":"14 1","pages":"271-272"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Surface nanoscale axial photonics (SNAP) at the silica microcapillary with ultrathin wall\",\"authors\":\"T. Hamidfar, A. Dmitriev, B. Magdan, P. Bianucci, M. Sumetsky\",\"doi\":\"10.1109/IPCON.2017.8116101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate SNAP microresonators fabricated in silica capillary fiber with ultrathin walls by local annealing with a focused CO2 laser and internal etching with hydrofluoric acid. We investigate the introduced capillary wall nonuniformity and demonstrate the feasibility of advanced microfluidic sensing with SNAP microresonators.\",\"PeriodicalId\":6657,\"journal\":{\"name\":\"2017 IEEE Photonics Conference (IPC) Part II\",\"volume\":\"14 1\",\"pages\":\"271-272\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Photonics Conference (IPC) Part II\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPCON.2017.8116101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Photonics Conference (IPC) Part II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPCON.2017.8116101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface nanoscale axial photonics (SNAP) at the silica microcapillary with ultrathin wall
We demonstrate SNAP microresonators fabricated in silica capillary fiber with ultrathin walls by local annealing with a focused CO2 laser and internal etching with hydrofluoric acid. We investigate the introduced capillary wall nonuniformity and demonstrate the feasibility of advanced microfluidic sensing with SNAP microresonators.