增长维数下离散选择模型的最优线性判别器

Debarghya Mukherjee, M. Banerjee
{"title":"增长维数下离散选择模型的最优线性判别器","authors":"Debarghya Mukherjee, M. Banerjee","doi":"10.1214/21-aos2085","DOIUrl":null,"url":null,"abstract":"Manski’s celebrated maximum score estimator for the discrete choice model, which is an optimal linear discriminator, has been the focus of much investigation in both the econometrics and statistics literatures, but its behavior under growing dimension scenarios largely remains unknown. This paper addresses that gap. Two different cases are considered: p grows with n but at a slow rate, i.e. p/n→ 0; and p n (fast growth). In the binary response model, we recast Manski’s score estimation as empirical risk minimization for a classification problem, and derive the `2 rate of convergence of the score estimator under a new transition condition in terms of a margin parameter that calibrates the level of difficulty of the estimation problem. We also establish upper and lower bounds for the minimax `2 error in the binary choice model that differ by a logarithmic factor, and construct a minimax-optimal estimator in the slow growth regime. Some extensions to the multinomial choice model are also considered.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal linear discriminators for the discrete choice model in growing dimensions\",\"authors\":\"Debarghya Mukherjee, M. Banerjee\",\"doi\":\"10.1214/21-aos2085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manski’s celebrated maximum score estimator for the discrete choice model, which is an optimal linear discriminator, has been the focus of much investigation in both the econometrics and statistics literatures, but its behavior under growing dimension scenarios largely remains unknown. This paper addresses that gap. Two different cases are considered: p grows with n but at a slow rate, i.e. p/n→ 0; and p n (fast growth). In the binary response model, we recast Manski’s score estimation as empirical risk minimization for a classification problem, and derive the `2 rate of convergence of the score estimator under a new transition condition in terms of a margin parameter that calibrates the level of difficulty of the estimation problem. We also establish upper and lower bounds for the minimax `2 error in the binary choice model that differ by a logarithmic factor, and construct a minimax-optimal estimator in the slow growth regime. Some extensions to the multinomial choice model are also considered.\",\"PeriodicalId\":22375,\"journal\":{\"name\":\"The Annals of Statistics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aos2085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aos2085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Manski著名的离散选择模型的最大分数估计器是一种最优线性判别器,在计量经济学和统计学文献中一直是许多研究的焦点,但它在增长维场景下的行为在很大程度上仍然未知。本文解决了这一差距。考虑两种不同的情况:p随n增长,但速度缓慢,即p/n→0;pn(快速增长)在二元响应模型中,我们将Manski的分数估计重新定义为分类问题的经验风险最小化,并根据校准估计问题难易程度的余量参数导出了分数估计器在新的过渡条件下的' 2收敛率。我们还建立了二元选择模型中存在一个对数因子差异的最小最大2误差的上界和下界,并构造了慢增长条件下的最小最优估计量。本文还考虑了多项选择模型的一些扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal linear discriminators for the discrete choice model in growing dimensions
Manski’s celebrated maximum score estimator for the discrete choice model, which is an optimal linear discriminator, has been the focus of much investigation in both the econometrics and statistics literatures, but its behavior under growing dimension scenarios largely remains unknown. This paper addresses that gap. Two different cases are considered: p grows with n but at a slow rate, i.e. p/n→ 0; and p n (fast growth). In the binary response model, we recast Manski’s score estimation as empirical risk minimization for a classification problem, and derive the `2 rate of convergence of the score estimator under a new transition condition in terms of a margin parameter that calibrates the level of difficulty of the estimation problem. We also establish upper and lower bounds for the minimax `2 error in the binary choice model that differ by a logarithmic factor, and construct a minimax-optimal estimator in the slow growth regime. Some extensions to the multinomial choice model are also considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum likelihood for high-noise group orbit estimation and single-particle cryo-EM Local Whittle estimation of high-dimensional long-run variance and precision matrices Efficient estimation of the maximal association between multiple predictors and a survival outcome The impacts of unobserved covariates on covariate-adaptive randomized experiments Estimation of expected Euler characteristic curves of nonstationary smooth random fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1