基于新型深度学习技术和体内监测的甲状腺功能亢进准确率的比较与预测

K. Reddy, D. Rani
{"title":"基于新型深度学习技术和体内监测的甲状腺功能亢进准确率的比较与预测","authors":"K. Reddy, D. Rani","doi":"10.47059/alinteri/v36i1/ajas21098","DOIUrl":null,"url":null,"abstract":"Aim: The aim of this research work is to determine the presence of hyperthyroidism using modern algorithms, and comparing the accuracy rate between deep learning algorithms and vivo monitoring. Materials and methods: Data collection containing ultrasound images from kaggle's website was used in this research. Samples were considered as (N=23) for Deep learning algorithm and (N=23) for vivo monitoring in accordance to total sample size calculated using clinical.com. The accuracy was calculated by using DPLA with a standard data set. Results: Comparison of accuracy rate is done by independent sample test using SPSS software. There is a statistically indifference between Deep learning algorithm and in vivo monitoring. Deep learning algorithm (87.89%) showed better results in comparison to vivo monitoring (83.32%). Conclusion: Deep learning algorithms appear to give better accuracy than in vivo monitoring to predict hyperthyroidism.","PeriodicalId":42396,"journal":{"name":"Alinteri Journal of Agriculture Sciences","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison and Prediction of Hyperthyroidism Accuracy Rate Using Novel Deep Learning Technology and Vivo Monitoring\",\"authors\":\"K. Reddy, D. Rani\",\"doi\":\"10.47059/alinteri/v36i1/ajas21098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: The aim of this research work is to determine the presence of hyperthyroidism using modern algorithms, and comparing the accuracy rate between deep learning algorithms and vivo monitoring. Materials and methods: Data collection containing ultrasound images from kaggle's website was used in this research. Samples were considered as (N=23) for Deep learning algorithm and (N=23) for vivo monitoring in accordance to total sample size calculated using clinical.com. The accuracy was calculated by using DPLA with a standard data set. Results: Comparison of accuracy rate is done by independent sample test using SPSS software. There is a statistically indifference between Deep learning algorithm and in vivo monitoring. Deep learning algorithm (87.89%) showed better results in comparison to vivo monitoring (83.32%). Conclusion: Deep learning algorithms appear to give better accuracy than in vivo monitoring to predict hyperthyroidism.\",\"PeriodicalId\":42396,\"journal\":{\"name\":\"Alinteri Journal of Agriculture Sciences\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alinteri Journal of Agriculture Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47059/alinteri/v36i1/ajas21098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alinteri Journal of Agriculture Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47059/alinteri/v36i1/ajas21098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究工作的目的是利用现代算法确定甲状腺功能亢进的存在,并比较深度学习算法与体内监测的准确率。材料与方法:本研究采用kaggle网站超声图像数据采集。根据clinical.com计算的总样本量,深度学习算法取样本(N=23),体内监测取样本(N=23)。采用DPLA对标准数据集进行精度计算。结果:准确率比较采用SPSS软件进行独立样本检验。深度学习算法与体内监测之间存在统计学差异。深度学习算法(87.89%)优于体内监测(83.32%)。结论:深度学习算法在预测甲状腺功能亢进方面似乎比体内监测更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison and Prediction of Hyperthyroidism Accuracy Rate Using Novel Deep Learning Technology and Vivo Monitoring
Aim: The aim of this research work is to determine the presence of hyperthyroidism using modern algorithms, and comparing the accuracy rate between deep learning algorithms and vivo monitoring. Materials and methods: Data collection containing ultrasound images from kaggle's website was used in this research. Samples were considered as (N=23) for Deep learning algorithm and (N=23) for vivo monitoring in accordance to total sample size calculated using clinical.com. The accuracy was calculated by using DPLA with a standard data set. Results: Comparison of accuracy rate is done by independent sample test using SPSS software. There is a statistically indifference between Deep learning algorithm and in vivo monitoring. Deep learning algorithm (87.89%) showed better results in comparison to vivo monitoring (83.32%). Conclusion: Deep learning algorithms appear to give better accuracy than in vivo monitoring to predict hyperthyroidism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Alinteri Journal of Agriculture Sciences
Alinteri Journal of Agriculture Sciences AGRICULTURE, MULTIDISCIPLINARY-
自引率
0.00%
发文量
6
期刊最新文献
Efficacy of Senna Leaves Extract and Rosuvastatin on Blood Parameters of Inducing Hyperlipidemia Laboratory Rats The Response of Growth and Yield of Sweet Pepper (Capsicum Annuum) to the Spraying with Nano-amino Acids and Potassium Silicate Effect of Organic Fertilization with Humic Acid and Foliar Spraying with Bread Yeast Extract on the Growth and Yield of the Solanum Melongena L The Effect of different Types of Organic Fertilizers on the Growth and Yield of Vegetable Plants Risk Management and Operational Performance of Hospitality Enterprises – A Case Study in the North Central Region of Vietnam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1