{"title":"无需承诺的高性能计算:SC2IT:使非专业人员可以使用计算科学的云计算接口","authors":"K. Jorissen, W. Johnson, F. Vila, J. Rehr","doi":"10.1109/eScience.2012.6404441","DOIUrl":null,"url":null,"abstract":"Computational work is a vital part of many scientific studies. In materials science research in particular, theoretical models are often needed to understand measurements. There is currently a double barrier that keeps a broad class of researchers from using state-of-the-art materials science codes: the software typically lacks user-friendliness, and the hardware requirements can demand a significant investment, e.g. the purchase of a Beowulf cluster. Scientific Cloud Computing has the potential to remove this barrier and make computational science accessible to a wider class of scientists who are not computational specialists. We present a set of interface tools, SC2IT, that enables seamless control of virtual compute clusters in the Amazon EC2 cloud and is designed to be embedded in user-friendly Java GUIs. We present applications of our Scientific Cloud Computing method to the materials science codes FEFF9, WIEN2k, and MEEP-mpi. SC2IT and the paradigm described here are applicable to other fields of research outside materials science within current Cloud Computing capability.","PeriodicalId":6364,"journal":{"name":"2012 IEEE 8th International Conference on E-Science","volume":"22 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"High-performance computing without commitment: SC2IT: A cloud computing interface that makes computational science available to non-specialists\",\"authors\":\"K. Jorissen, W. Johnson, F. Vila, J. Rehr\",\"doi\":\"10.1109/eScience.2012.6404441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational work is a vital part of many scientific studies. In materials science research in particular, theoretical models are often needed to understand measurements. There is currently a double barrier that keeps a broad class of researchers from using state-of-the-art materials science codes: the software typically lacks user-friendliness, and the hardware requirements can demand a significant investment, e.g. the purchase of a Beowulf cluster. Scientific Cloud Computing has the potential to remove this barrier and make computational science accessible to a wider class of scientists who are not computational specialists. We present a set of interface tools, SC2IT, that enables seamless control of virtual compute clusters in the Amazon EC2 cloud and is designed to be embedded in user-friendly Java GUIs. We present applications of our Scientific Cloud Computing method to the materials science codes FEFF9, WIEN2k, and MEEP-mpi. SC2IT and the paradigm described here are applicable to other fields of research outside materials science within current Cloud Computing capability.\",\"PeriodicalId\":6364,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on E-Science\",\"volume\":\"22 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on E-Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2012.6404441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on E-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2012.6404441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-performance computing without commitment: SC2IT: A cloud computing interface that makes computational science available to non-specialists
Computational work is a vital part of many scientific studies. In materials science research in particular, theoretical models are often needed to understand measurements. There is currently a double barrier that keeps a broad class of researchers from using state-of-the-art materials science codes: the software typically lacks user-friendliness, and the hardware requirements can demand a significant investment, e.g. the purchase of a Beowulf cluster. Scientific Cloud Computing has the potential to remove this barrier and make computational science accessible to a wider class of scientists who are not computational specialists. We present a set of interface tools, SC2IT, that enables seamless control of virtual compute clusters in the Amazon EC2 cloud and is designed to be embedded in user-friendly Java GUIs. We present applications of our Scientific Cloud Computing method to the materials science codes FEFF9, WIEN2k, and MEEP-mpi. SC2IT and the paradigm described here are applicable to other fields of research outside materials science within current Cloud Computing capability.