{"title":"非参数贝叶斯多任务协同过滤","authors":"S. Chatzis","doi":"10.1145/2505515.2505517","DOIUrl":null,"url":null,"abstract":"The dramatic rates new digital content becomes available has brought collaborative filtering systems to the epicenter of computer science research in the last decade. One of the greatest challenges collaborative filtering systems are confronted with is the data sparsity problem: users typically rate only very few items; thus, availability of historical data is not adequate to effectively perform prediction. To alleviate these issues, in this paper we propose a novel multitask collaborative filtering approach. Our approach is based on a coupled latent factor model of the users rating functions, which allows for coming up with an agile information sharing mechanism that extracts much richer task-correlation information compared to existing approaches. Formulation of our method is based on concepts from the field of Bayesian nonparametrics, specifically Indian Buffet Process priors, which allow for data-driven determination of the optimal number of underlying latent features (item characteristics and user traits) assumed in the context of the model. We experiment on several real-world datasets, demonstrating both the efficacy of our method, and its superiority over existing approaches.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Nonparametric bayesian multitask collaborative filtering\",\"authors\":\"S. Chatzis\",\"doi\":\"10.1145/2505515.2505517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dramatic rates new digital content becomes available has brought collaborative filtering systems to the epicenter of computer science research in the last decade. One of the greatest challenges collaborative filtering systems are confronted with is the data sparsity problem: users typically rate only very few items; thus, availability of historical data is not adequate to effectively perform prediction. To alleviate these issues, in this paper we propose a novel multitask collaborative filtering approach. Our approach is based on a coupled latent factor model of the users rating functions, which allows for coming up with an agile information sharing mechanism that extracts much richer task-correlation information compared to existing approaches. Formulation of our method is based on concepts from the field of Bayesian nonparametrics, specifically Indian Buffet Process priors, which allow for data-driven determination of the optimal number of underlying latent features (item characteristics and user traits) assumed in the context of the model. We experiment on several real-world datasets, demonstrating both the efficacy of our method, and its superiority over existing approaches.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2505517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在过去的十年里,新的数字内容的惊人速度使协同过滤系统成为计算机科学研究的中心。协同过滤系统面临的最大挑战之一是数据稀疏性问题:用户通常只对很少的项目进行评分;因此,历史数据的可用性不足以有效地进行预测。为了解决这些问题,本文提出了一种新的多任务协同过滤方法。我们的方法基于用户评级函数的耦合潜在因素模型,它允许提出一个敏捷的信息共享机制,与现有方法相比,该机制可以提取更丰富的任务相关信息。我们的方法的制定是基于贝叶斯非参数领域的概念,特别是印度自助餐过程先验,它允许在模型背景下假设的数据驱动的潜在特征(项目特征和用户特征)的最佳数量的确定。我们在几个真实世界的数据集上进行了实验,证明了我们的方法的有效性,以及它比现有方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonparametric bayesian multitask collaborative filtering
The dramatic rates new digital content becomes available has brought collaborative filtering systems to the epicenter of computer science research in the last decade. One of the greatest challenges collaborative filtering systems are confronted with is the data sparsity problem: users typically rate only very few items; thus, availability of historical data is not adequate to effectively perform prediction. To alleviate these issues, in this paper we propose a novel multitask collaborative filtering approach. Our approach is based on a coupled latent factor model of the users rating functions, which allows for coming up with an agile information sharing mechanism that extracts much richer task-correlation information compared to existing approaches. Formulation of our method is based on concepts from the field of Bayesian nonparametrics, specifically Indian Buffet Process priors, which allow for data-driven determination of the optimal number of underlying latent features (item characteristics and user traits) assumed in the context of the model. We experiment on several real-world datasets, demonstrating both the efficacy of our method, and its superiority over existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring XML data is as easy as using maps Mining-based compression approach of propositional formulae Flexible and dynamic compromises for effective recommendations Efficient parsing-based search over structured data Recommendation via user's personality and social contextual
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1