OrcBench:一个代表性的无服务器基准测试

Q1 Computer Science IEEE Cloud Computing Pub Date : 2022-07-01 DOI:10.1109/CLOUD55607.2022.00028
Ryan Hancock, Sreeharsha Udayashankar, A. Mashtizadeh, S. Al-Kiswany
{"title":"OrcBench:一个代表性的无服务器基准测试","authors":"Ryan Hancock, Sreeharsha Udayashankar, A. Mashtizadeh, S. Al-Kiswany","doi":"10.1109/CLOUD55607.2022.00028","DOIUrl":null,"url":null,"abstract":"Serverless computing is rapidly growing area of research. No standardized benchmark currently exists for evaluating orchestration level decisions or executing large serverless workloads because of the limited data provided by cloud providers. Current benchmarks focus on other aspects, such as the cost of running general types of functions and their runtimes.We introduce OrcBench, the first orchestration benchmark based on the recently published Microsoft Azure serverless data set. OrcBench categorizes 8622 serverless functions into 17 distinct models, which represent 5.6 million invocations from the original trace.OrcBench also incorporates a time-series analysis to identify function chains within the dataset. OrcBench can use these to create workloads that mimic complete serverless applications, which includes simulating CPU and memory usage. The modeling allows these workloads to be scaled according to the target hardware configuration.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"77 1","pages":"103-108"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"OrcBench: A Representative Serverless Benchmark\",\"authors\":\"Ryan Hancock, Sreeharsha Udayashankar, A. Mashtizadeh, S. Al-Kiswany\",\"doi\":\"10.1109/CLOUD55607.2022.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serverless computing is rapidly growing area of research. No standardized benchmark currently exists for evaluating orchestration level decisions or executing large serverless workloads because of the limited data provided by cloud providers. Current benchmarks focus on other aspects, such as the cost of running general types of functions and their runtimes.We introduce OrcBench, the first orchestration benchmark based on the recently published Microsoft Azure serverless data set. OrcBench categorizes 8622 serverless functions into 17 distinct models, which represent 5.6 million invocations from the original trace.OrcBench also incorporates a time-series analysis to identify function chains within the dataset. OrcBench can use these to create workloads that mimic complete serverless applications, which includes simulating CPU and memory usage. The modeling allows these workloads to be scaled according to the target hardware configuration.\",\"PeriodicalId\":54281,\"journal\":{\"name\":\"IEEE Cloud Computing\",\"volume\":\"77 1\",\"pages\":\"103-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD55607.2022.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

摘要

无服务器计算是一个快速发展的研究领域。由于云提供商提供的数据有限,目前还没有用于评估编排级别决策或执行大型无服务器工作负载的标准化基准。当前的基准测试关注其他方面,例如运行一般类型的函数及其运行时的成本。我们介绍OrcBench,这是基于最近发布的Microsoft Azure无服务器数据集的第一个业务流程基准测试。OrcBench将8622个无服务器函数分为17个不同的模型,代表了原始跟踪中的560万次调用。OrcBench还结合了时间序列分析来识别数据集中的功能链。OrcBench可以使用这些来创建模拟完全无服务器应用程序的工作负载,包括模拟CPU和内存使用情况。建模允许根据目标硬件配置对这些工作负载进行缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OrcBench: A Representative Serverless Benchmark
Serverless computing is rapidly growing area of research. No standardized benchmark currently exists for evaluating orchestration level decisions or executing large serverless workloads because of the limited data provided by cloud providers. Current benchmarks focus on other aspects, such as the cost of running general types of functions and their runtimes.We introduce OrcBench, the first orchestration benchmark based on the recently published Microsoft Azure serverless data set. OrcBench categorizes 8622 serverless functions into 17 distinct models, which represent 5.6 million invocations from the original trace.OrcBench also incorporates a time-series analysis to identify function chains within the dataset. OrcBench can use these to create workloads that mimic complete serverless applications, which includes simulating CPU and memory usage. The modeling allows these workloads to be scaled according to the target hardware configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Cloud Computing
IEEE Cloud Computing Computer Science-Computer Networks and Communications
CiteScore
11.20
自引率
0.00%
发文量
0
期刊介绍: Cessation. IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)
期刊最新文献
Different in different ways: A network-analysis approach to voice and prosody in Autism Spectrum Disorder. Layered Contention Mitigation for Cloud Storage Towards More Effective and Explainable Fault Management Using Cross-Layer Service Topology Bypass Container Overlay Networks with Transparent BPF-driven Socket Replacement Event-Driven Approach for Monitoring and Orchestration of Cloud and Edge-Enabled IoT Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1