基于变压器和BiGRU的电网电流互感器在线监测研究

Xiaokui Zang, Zhiqiang Cao, Mengshi Xiao, Xiaoou Yang
{"title":"基于变压器和BiGRU的电网电流互感器在线监测研究","authors":"Xiaokui Zang, Zhiqiang Cao, Mengshi Xiao, Xiaoou Yang","doi":"10.3233/jcm-226763","DOIUrl":null,"url":null,"abstract":"Transformers play a crucial role in ensuring the safety of power grids. It is of great value to diagnose faults using the large amount of power data generated by the grid. It is possible to detect internal latent faults in transformers in advance of their occurrence if the normal operating condition of the transformer is detected in a timely manner. To perform online fault diagnosis of grid current transformers, we combine the Transformer and BiGRU methods. There is a temporal component to the fault input sample sequences. By using Transformer’s multi-headed attention mechanism to extract deep features from fault input sample sequences, the temporal association between latent variables can be fully exploited. As a result of the extraction of features, BiGRU is used to generate fault category coding as an output. The experimental results indicate that using the proposed algorithm achieves better results than using a single model, which is useful for the study and application of fault diagnosis in power grids for current transformers.","PeriodicalId":14668,"journal":{"name":"J. Comput. Methods Sci. Eng.","volume":"57 1","pages":"1137-1149"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on online monitoring of grid current transformer based on transformers and BiGRU\",\"authors\":\"Xiaokui Zang, Zhiqiang Cao, Mengshi Xiao, Xiaoou Yang\",\"doi\":\"10.3233/jcm-226763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transformers play a crucial role in ensuring the safety of power grids. It is of great value to diagnose faults using the large amount of power data generated by the grid. It is possible to detect internal latent faults in transformers in advance of their occurrence if the normal operating condition of the transformer is detected in a timely manner. To perform online fault diagnosis of grid current transformers, we combine the Transformer and BiGRU methods. There is a temporal component to the fault input sample sequences. By using Transformer’s multi-headed attention mechanism to extract deep features from fault input sample sequences, the temporal association between latent variables can be fully exploited. As a result of the extraction of features, BiGRU is used to generate fault category coding as an output. The experimental results indicate that using the proposed algorithm achieves better results than using a single model, which is useful for the study and application of fault diagnosis in power grids for current transformers.\",\"PeriodicalId\":14668,\"journal\":{\"name\":\"J. Comput. Methods Sci. Eng.\",\"volume\":\"57 1\",\"pages\":\"1137-1149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Methods Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcm-226763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Methods Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

变压器在保证电网安全运行中起着至关重要的作用。利用电网产生的大量电力数据进行故障诊断具有重要的价值。如果及时发现变压器的正常运行状态,就有可能在变压器内部潜在故障发生之前发现故障。为了实现电网电流互感器的在线故障诊断,我们将Transformer和BiGRU方法相结合。故障输入样本序列有一个时间分量。利用Transformer的多头注意机制从故障输入样本序列中提取深层特征,可以充分利用潜在变量之间的时间关联。作为特征提取的结果,使用BiGRU生成故障分类编码作为输出。实验结果表明,该算法比单一模型具有更好的诊断效果,为电网中电流互感器故障诊断的研究和应用提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on online monitoring of grid current transformer based on transformers and BiGRU
Transformers play a crucial role in ensuring the safety of power grids. It is of great value to diagnose faults using the large amount of power data generated by the grid. It is possible to detect internal latent faults in transformers in advance of their occurrence if the normal operating condition of the transformer is detected in a timely manner. To perform online fault diagnosis of grid current transformers, we combine the Transformer and BiGRU methods. There is a temporal component to the fault input sample sequences. By using Transformer’s multi-headed attention mechanism to extract deep features from fault input sample sequences, the temporal association between latent variables can be fully exploited. As a result of the extraction of features, BiGRU is used to generate fault category coding as an output. The experimental results indicate that using the proposed algorithm achieves better results than using a single model, which is useful for the study and application of fault diagnosis in power grids for current transformers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retracted to: Design and dynamics simulation of vehicle active occupant restraint protection system Flip-OFDM Optical MIMO Based VLC System Using ML/DL Approach Using the Structure-Behavior Coalescence Method to Formalize the Action Flow Semantics of UML 2.0 Activity Diagrams Accurate Calibration and Scalable Bandwidth Sharing of Multi-Queue SSDs Looking to Personalize Gaze Estimation Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1