Nathalia S. Rios , Maisa P. Pinheiro , José Cleiton S. dos Santos , Thiago de S. Fonseca , Lara D. Lima , Marcos C. de Mattos , Denise M.G. Freire , Ivanildo J. da Silva Júnior , Elena Rodríguez-Aguado , Luciana R.B. Gonçalves
{"title":"重组南极念珠菌脂肪酶B在SBA-15上的共价固定化策略及其在(R,S)-乙酸苯乙酯动力学拆分中的应用","authors":"Nathalia S. Rios , Maisa P. Pinheiro , José Cleiton S. dos Santos , Thiago de S. Fonseca , Lara D. Lima , Marcos C. de Mattos , Denise M.G. Freire , Ivanildo J. da Silva Júnior , Elena Rodríguez-Aguado , Luciana R.B. Gonçalves","doi":"10.1016/j.molcatb.2016.08.009","DOIUrl":null,"url":null,"abstract":"<div><p>A recombinant <em>Candida antarctica</em> lipase B expressed in <em>Pichia pastoris</em> (LIPB) was immobilized on pore-expanded SBA-15 previously modified 3-amino-propyltriethoxysilane (APTES) and activated with two bifunctional reagents, glutaraldehyde (GA) or divinylsulfone (DVS), producing the biocatalysts: SBA-15-APTES-GA-LIPB and SBA-15-APTES-DVS-LIPB, respectively. After LIPB immobilization, both preparations were then modified with glutaraldehyde, producing the biocatalysts: SBA-15-APTES-GA-LIPB-GA, SBA-15-APTES-DVS-LIPB-DVS. Alternatively, LIPB was immobilized on SBA-15-APTES-DVS at pH 10.2 and the biocatalyst was named SBA-15-APTES-DVS-LIPB-pH10. The different biocatalysts were assayed to check the effect of the immobilization strategies on the stability and in the substrate specificity during the kinetic resolution of (R,S)-Phenylethyl acetate. The thermal stability of some new preparations were higher than LIPB adsorbed on SBA-15 (SBA-15-LIPB) and LIPB immobilized on Glyoxyl-agarose. High conversions in the enzymatic kinetic resolution were obtained (43–50%) for all biocatalysts studied. Regarding activity and stability, the SBA-15-APTES-DVS-LIPB-pH10 was the most successful strategy, since, in first cycle, the maximum conversion was obtained (50%), and the biocatalyst remained active and enantioselective even after five successive cycles.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"133 ","pages":"Pages 246-258"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.08.009","citationCount":"67","resultStr":"{\"title\":\"Strategies of covalent immobilization of a recombinant Candida antarctica lipase B on pore-expanded SBA-15 and its application in the kinetic resolution of (R,S)-Phenylethyl acetate\",\"authors\":\"Nathalia S. Rios , Maisa P. Pinheiro , José Cleiton S. dos Santos , Thiago de S. Fonseca , Lara D. Lima , Marcos C. de Mattos , Denise M.G. Freire , Ivanildo J. da Silva Júnior , Elena Rodríguez-Aguado , Luciana R.B. Gonçalves\",\"doi\":\"10.1016/j.molcatb.2016.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A recombinant <em>Candida antarctica</em> lipase B expressed in <em>Pichia pastoris</em> (LIPB) was immobilized on pore-expanded SBA-15 previously modified 3-amino-propyltriethoxysilane (APTES) and activated with two bifunctional reagents, glutaraldehyde (GA) or divinylsulfone (DVS), producing the biocatalysts: SBA-15-APTES-GA-LIPB and SBA-15-APTES-DVS-LIPB, respectively. After LIPB immobilization, both preparations were then modified with glutaraldehyde, producing the biocatalysts: SBA-15-APTES-GA-LIPB-GA, SBA-15-APTES-DVS-LIPB-DVS. Alternatively, LIPB was immobilized on SBA-15-APTES-DVS at pH 10.2 and the biocatalyst was named SBA-15-APTES-DVS-LIPB-pH10. The different biocatalysts were assayed to check the effect of the immobilization strategies on the stability and in the substrate specificity during the kinetic resolution of (R,S)-Phenylethyl acetate. The thermal stability of some new preparations were higher than LIPB adsorbed on SBA-15 (SBA-15-LIPB) and LIPB immobilized on Glyoxyl-agarose. High conversions in the enzymatic kinetic resolution were obtained (43–50%) for all biocatalysts studied. Regarding activity and stability, the SBA-15-APTES-DVS-LIPB-pH10 was the most successful strategy, since, in first cycle, the maximum conversion was obtained (50%), and the biocatalyst remained active and enantioselective even after five successive cycles.</p></div>\",\"PeriodicalId\":16416,\"journal\":{\"name\":\"Journal of Molecular Catalysis B-enzymatic\",\"volume\":\"133 \",\"pages\":\"Pages 246-258\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.08.009\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis B-enzymatic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381117716301539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716301539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
Strategies of covalent immobilization of a recombinant Candida antarctica lipase B on pore-expanded SBA-15 and its application in the kinetic resolution of (R,S)-Phenylethyl acetate
A recombinant Candida antarctica lipase B expressed in Pichia pastoris (LIPB) was immobilized on pore-expanded SBA-15 previously modified 3-amino-propyltriethoxysilane (APTES) and activated with two bifunctional reagents, glutaraldehyde (GA) or divinylsulfone (DVS), producing the biocatalysts: SBA-15-APTES-GA-LIPB and SBA-15-APTES-DVS-LIPB, respectively. After LIPB immobilization, both preparations were then modified with glutaraldehyde, producing the biocatalysts: SBA-15-APTES-GA-LIPB-GA, SBA-15-APTES-DVS-LIPB-DVS. Alternatively, LIPB was immobilized on SBA-15-APTES-DVS at pH 10.2 and the biocatalyst was named SBA-15-APTES-DVS-LIPB-pH10. The different biocatalysts were assayed to check the effect of the immobilization strategies on the stability and in the substrate specificity during the kinetic resolution of (R,S)-Phenylethyl acetate. The thermal stability of some new preparations were higher than LIPB adsorbed on SBA-15 (SBA-15-LIPB) and LIPB immobilized on Glyoxyl-agarose. High conversions in the enzymatic kinetic resolution were obtained (43–50%) for all biocatalysts studied. Regarding activity and stability, the SBA-15-APTES-DVS-LIPB-pH10 was the most successful strategy, since, in first cycle, the maximum conversion was obtained (50%), and the biocatalyst remained active and enantioselective even after five successive cycles.
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.