{"title":"基于局部自适应强正交元法的非局部应变梯度功能梯度非线性纳米梁振动研究","authors":"M. Trabelssi, S. El-Borgi","doi":"10.1177/23977914221129426","DOIUrl":null,"url":null,"abstract":"The primary objective of this paper is to propose a novel method to derive Differential Quadrature Method matrices with several degrees of freedom at the boundaries that can be used to build Strong Quadrature Elements to solve fourth and higher-order equations of motion. The proposed method, referred to as Locally adaptive Strong Quadrature Element Method, is applied to higher-order equations of motion for nonlinear graded Timoshenko and Euler-Bernoulli nanobeams formulated using the Second Strain Gradient Theory or the Nonlocal Strain Gradient Theory. To limit the formulation complexity, the proposed approach is based on the regular formulation of the differential quadrature method combined with custom-built transfer matrices. Moreover, it does not require a different formulation for fourth and sixth-order equations and can be extended beyond sixth-order equations. Validation was carried out using examples from the literature as well as data obtained using the classical Locally adaptive Quadrature Element Method. Both linear and nonlinear frequencies were evaluated for a large number of configurations and boundary conditions. The proposed approach resulted in good accuracy and a convergence speed comparable to the conventional Locally adaptive Quadrature Element Method.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration of nonlocal strain gradient functionally graded nonlinear nanobeams using a novel locally adaptive strong quadrature element method\",\"authors\":\"M. Trabelssi, S. El-Borgi\",\"doi\":\"10.1177/23977914221129426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary objective of this paper is to propose a novel method to derive Differential Quadrature Method matrices with several degrees of freedom at the boundaries that can be used to build Strong Quadrature Elements to solve fourth and higher-order equations of motion. The proposed method, referred to as Locally adaptive Strong Quadrature Element Method, is applied to higher-order equations of motion for nonlinear graded Timoshenko and Euler-Bernoulli nanobeams formulated using the Second Strain Gradient Theory or the Nonlocal Strain Gradient Theory. To limit the formulation complexity, the proposed approach is based on the regular formulation of the differential quadrature method combined with custom-built transfer matrices. Moreover, it does not require a different formulation for fourth and sixth-order equations and can be extended beyond sixth-order equations. Validation was carried out using examples from the literature as well as data obtained using the classical Locally adaptive Quadrature Element Method. Both linear and nonlinear frequencies were evaluated for a large number of configurations and boundary conditions. The proposed approach resulted in good accuracy and a convergence speed comparable to the conventional Locally adaptive Quadrature Element Method.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/23977914221129426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914221129426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Vibration of nonlocal strain gradient functionally graded nonlinear nanobeams using a novel locally adaptive strong quadrature element method
The primary objective of this paper is to propose a novel method to derive Differential Quadrature Method matrices with several degrees of freedom at the boundaries that can be used to build Strong Quadrature Elements to solve fourth and higher-order equations of motion. The proposed method, referred to as Locally adaptive Strong Quadrature Element Method, is applied to higher-order equations of motion for nonlinear graded Timoshenko and Euler-Bernoulli nanobeams formulated using the Second Strain Gradient Theory or the Nonlocal Strain Gradient Theory. To limit the formulation complexity, the proposed approach is based on the regular formulation of the differential quadrature method combined with custom-built transfer matrices. Moreover, it does not require a different formulation for fourth and sixth-order equations and can be extended beyond sixth-order equations. Validation was carried out using examples from the literature as well as data obtained using the classical Locally adaptive Quadrature Element Method. Both linear and nonlinear frequencies were evaluated for a large number of configurations and boundary conditions. The proposed approach resulted in good accuracy and a convergence speed comparable to the conventional Locally adaptive Quadrature Element Method.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.