地塞米松治疗保留了成人心脏外植体的结构并支持其在体外的长期收缩性

L. Eisenberg, Keerat Kaur, John M. Castillo, John G. Edwards, C. Eisenberg
{"title":"地塞米松治疗保留了成人心脏外植体的结构并支持其在体外的长期收缩性","authors":"L. Eisenberg, Keerat Kaur, John M. Castillo, John G. Edwards, C. Eisenberg","doi":"10.3390/ijtm3030025","DOIUrl":null,"url":null,"abstract":"Normal contractile function of the myocardium is essential for optimal cardiovascular health. Evaluating drug effects on cardiomyocyte function at the cellular level is difficult for long-term studies. Present culture systems rely on isolated, cardiomyocyte preparations or cardiomyocytes derived from pluripotent stem cells (PSCs), all of which have limitations. Isolated, endogenous cardiomyocytes do not remain contractile in culture long term. While PSC-derived cardiomyocytes show contractile activity for longer periods of time, their phenotype is more embryonic than adult. Here we report that dexamethasone (DEX) treatment of adult mouse atrial tissue can extend its functionality in culture. Normally, cardiac explants cease their capacity as a contractile tissue within the first month, as the tissue flattens and spreads out on the culture substrate, while the cells dedifferentiate and lose their myocardial phenotype. However, with DEX treatment, cardiac explants maintain their contractile function, 3D morphology, and myocyte phenotype for up to 6 months. Moreover, DEX also preserved the contractile phenotype of isolated rat cardiomyocytes. These data with DEX suggest that simple modifications in culture conditions can greatly improve the long-term utility of in vitro model systems for screening drugs and agents that could be employed to alleviate human cardiac disease.","PeriodicalId":43005,"journal":{"name":"Journal of International Translational Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dexamethasone Treatment Preserves the Structure of Adult Cardiac Explants and Supports Their Long-Term Contractility In Vitro\",\"authors\":\"L. Eisenberg, Keerat Kaur, John M. Castillo, John G. Edwards, C. Eisenberg\",\"doi\":\"10.3390/ijtm3030025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Normal contractile function of the myocardium is essential for optimal cardiovascular health. Evaluating drug effects on cardiomyocyte function at the cellular level is difficult for long-term studies. Present culture systems rely on isolated, cardiomyocyte preparations or cardiomyocytes derived from pluripotent stem cells (PSCs), all of which have limitations. Isolated, endogenous cardiomyocytes do not remain contractile in culture long term. While PSC-derived cardiomyocytes show contractile activity for longer periods of time, their phenotype is more embryonic than adult. Here we report that dexamethasone (DEX) treatment of adult mouse atrial tissue can extend its functionality in culture. Normally, cardiac explants cease their capacity as a contractile tissue within the first month, as the tissue flattens and spreads out on the culture substrate, while the cells dedifferentiate and lose their myocardial phenotype. However, with DEX treatment, cardiac explants maintain their contractile function, 3D morphology, and myocyte phenotype for up to 6 months. Moreover, DEX also preserved the contractile phenotype of isolated rat cardiomyocytes. These data with DEX suggest that simple modifications in culture conditions can greatly improve the long-term utility of in vitro model systems for screening drugs and agents that could be employed to alleviate human cardiac disease.\",\"PeriodicalId\":43005,\"journal\":{\"name\":\"Journal of International Translational Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of International Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/ijtm3030025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of International Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ijtm3030025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正常的心肌收缩功能对最佳的心血管健康至关重要。在细胞水平上评价药物对心肌细胞功能的影响是长期研究的难点。目前的培养系统依赖于分离的心肌细胞制剂或多能干细胞(PSCs)衍生的心肌细胞,所有这些都有局限性。分离的内源性心肌细胞在培养中长期不能保持收缩。虽然psc衍生的心肌细胞表现出较长时间的收缩活性,但它们的表型比成人更像胚胎。在这里,我们报告了地塞米松(DEX)治疗成年小鼠心房组织可以延长其在培养中的功能。正常情况下,心脏外植体在第一个月内就会失去收缩组织的能力,因为组织变平并在培养基质上扩散,同时细胞去分化并失去心肌表型。然而,在DEX治疗下,心脏外植体可维持其收缩功能、3D形态和心肌细胞表型长达6个月。此外,DEX还保留了离体大鼠心肌细胞的收缩表型。DEX的这些数据表明,对培养条件进行简单的修改可以大大提高体外模型系统筛选可用于缓解人类心脏病的药物和制剂的长期效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dexamethasone Treatment Preserves the Structure of Adult Cardiac Explants and Supports Their Long-Term Contractility In Vitro
Normal contractile function of the myocardium is essential for optimal cardiovascular health. Evaluating drug effects on cardiomyocyte function at the cellular level is difficult for long-term studies. Present culture systems rely on isolated, cardiomyocyte preparations or cardiomyocytes derived from pluripotent stem cells (PSCs), all of which have limitations. Isolated, endogenous cardiomyocytes do not remain contractile in culture long term. While PSC-derived cardiomyocytes show contractile activity for longer periods of time, their phenotype is more embryonic than adult. Here we report that dexamethasone (DEX) treatment of adult mouse atrial tissue can extend its functionality in culture. Normally, cardiac explants cease their capacity as a contractile tissue within the first month, as the tissue flattens and spreads out on the culture substrate, while the cells dedifferentiate and lose their myocardial phenotype. However, with DEX treatment, cardiac explants maintain their contractile function, 3D morphology, and myocyte phenotype for up to 6 months. Moreover, DEX also preserved the contractile phenotype of isolated rat cardiomyocytes. These data with DEX suggest that simple modifications in culture conditions can greatly improve the long-term utility of in vitro model systems for screening drugs and agents that could be employed to alleviate human cardiac disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of International Translational Medicine
Journal of International Translational Medicine MEDICINE, RESEARCH & EXPERIMENTAL-
自引率
0.00%
发文量
317
审稿时长
8 weeks
期刊介绍: Journal of International Translational Medicine (JITM, ISSN 2227-6394), founded in 2012, is an English academic journal published by Journal of International Translational Medicine Co., Ltd and sponsored by International Fderation of Translational Medicine. JITM is an open access journal freely serving to submit, review, publish, read and download full text and quote. JITM is a quarterly publication with the first issue published in March, 2013, and all articles published in English are compiled and edited by professional graphic designers according to the international compiling and editing standard. All members of the JITM Editorial Board are the famous international specialists in the field of translational medicine who come from twenty different countries and areas such as USA, Britain, France, Germany and so on.
期刊最新文献
Exploring the Prognostic and Predictive Roles of Ki-67 in Endometrial Cancer A Review Concerning the Use of Etravirine and Darunavir in Translational Medicine Common Variable Immunodeficiency and Selective IgA Deficiency: Focus on Autoimmune Manifestations and Their Pathogenesis Primary Mucosa-Associated Lymphoid Tissue Lymphoma of the Parotid Gland in 32-Year-Old Male, a Case Report Mentha longifolia L. Inhibits Colorectal Cancer Cell Proliferation and Induces Apoptosis via Caspase Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1