人工智能技术在电厂故障诊断中的应用评估

Respuestas Pub Date : 2020-05-01 DOI:10.22463/0122820X.2966
Jesús Filander-Caratar, Andrés Mauricio-Valencia, Gladys Caicedo-Delgado, Cristian Chamorro
{"title":"人工智能技术在电厂故障诊断中的应用评估","authors":"Jesús Filander-Caratar, Andrés Mauricio-Valencia, Gladys Caicedo-Delgado, Cristian Chamorro","doi":"10.22463/0122820X.2966","DOIUrl":null,"url":null,"abstract":"Este artículo presenta una evaluación de herramientas computacionales basadas en técnicas de inteligencia artificial, las cuales se enfocan en la detección y diagnóstico de fallas en los diferentes procesos asociados a una central de generación de energía tal como: hidroeléctricas, termoeléctricas y centrales nucleares. Inicialmente, se describen de manera general las principales técnicas de inteligencia artificial que permiten la construcción de sistemas inteligentes para el diagnóstico de fallas en centrales eléctricas, se presentan técnicas como: lógica difusa, redes neuronales, sistemas basados en el conocimiento y técnicas hibridas. Posteriormente se presentan en tablas los diferentes artículos encontrados para cada una de las técnicas, ilustrando el año de publicación y una descripción de cada publicación. El resultado de este trabajo es la comparación y evaluación de cada técnica enfocada al diagnóstico de fallas en centrales eléctricas. Lo novedoso de este trabajo, es que presenta una extensa bibliografía de las aplicaciones de las diferentes técnicas inteligentes en la solución del problema de detección y diagnóstico de falla en centrales de generación eléctrica. Palabras clave:","PeriodicalId":20991,"journal":{"name":"Respuestas","volume":"33 2 1","pages":"177-189"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of artificial intelligence techniques used in the diagnosis of failures in power plants\",\"authors\":\"Jesús Filander-Caratar, Andrés Mauricio-Valencia, Gladys Caicedo-Delgado, Cristian Chamorro\",\"doi\":\"10.22463/0122820X.2966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Este artículo presenta una evaluación de herramientas computacionales basadas en técnicas de inteligencia artificial, las cuales se enfocan en la detección y diagnóstico de fallas en los diferentes procesos asociados a una central de generación de energía tal como: hidroeléctricas, termoeléctricas y centrales nucleares. Inicialmente, se describen de manera general las principales técnicas de inteligencia artificial que permiten la construcción de sistemas inteligentes para el diagnóstico de fallas en centrales eléctricas, se presentan técnicas como: lógica difusa, redes neuronales, sistemas basados en el conocimiento y técnicas hibridas. Posteriormente se presentan en tablas los diferentes artículos encontrados para cada una de las técnicas, ilustrando el año de publicación y una descripción de cada publicación. El resultado de este trabajo es la comparación y evaluación de cada técnica enfocada al diagnóstico de fallas en centrales eléctricas. Lo novedoso de este trabajo, es que presenta una extensa bibliografía de las aplicaciones de las diferentes técnicas inteligentes en la solución del problema de detección y diagnóstico de falla en centrales de generación eléctrica. Palabras clave:\",\"PeriodicalId\":20991,\"journal\":{\"name\":\"Respuestas\",\"volume\":\"33 2 1\",\"pages\":\"177-189\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respuestas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22463/0122820X.2966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respuestas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22463/0122820X.2966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于人工智能技术的计算工具的评估,该技术侧重于与发电厂(如水力发电厂、热电厂和核电站)相关的不同过程中的故障检测和诊断。首先,我们概述了构建电站故障诊断智能系统的主要人工智能技术,并提出了模糊逻辑、神经网络、基于知识的系统和混合技术等技术。随后,在表格中列出了每种技术的不同文章,说明了出版年份和每个出版物的描述。本工作的结果是对电厂故障诊断的各种技术进行比较和评价。这项工作的新颖之处在于,它提出了一个广泛的参考文献,不同的智能技术在解决电厂故障检测和诊断问题中的应用。关键词:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of artificial intelligence techniques used in the diagnosis of failures in power plants
Este artículo presenta una evaluación de herramientas computacionales basadas en técnicas de inteligencia artificial, las cuales se enfocan en la detección y diagnóstico de fallas en los diferentes procesos asociados a una central de generación de energía tal como: hidroeléctricas, termoeléctricas y centrales nucleares. Inicialmente, se describen de manera general las principales técnicas de inteligencia artificial que permiten la construcción de sistemas inteligentes para el diagnóstico de fallas en centrales eléctricas, se presentan técnicas como: lógica difusa, redes neuronales, sistemas basados en el conocimiento y técnicas hibridas. Posteriormente se presentan en tablas los diferentes artículos encontrados para cada una de las técnicas, ilustrando el año de publicación y una descripción de cada publicación. El resultado de este trabajo es la comparación y evaluación de cada técnica enfocada al diagnóstico de fallas en centrales eléctricas. Lo novedoso de este trabajo, es que presenta una extensa bibliografía de las aplicaciones de las diferentes técnicas inteligentes en la solución del problema de detección y diagnóstico de falla en centrales de generación eléctrica. Palabras clave:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelo hidráulico unidimensional para determinar zonas de inundación en ríos de montaña Revivir el patrimonio extinto a partir de la contigüidad de lo virtual Distanciamiento social controlado mediante video vigilancia usando código abierto Digitalización de redes de distribución de agua, implementando imágenes satelitales, drones y sistemas de información geográfica Transformaciones geométricas vs Inducción de ruido: Comparación de técnicas de aumentado de datos para análisis de imágenes dermoscópicas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1