协同云网络中最优延迟-能量动态卸载方案

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied Computing Review Pub Date : 2023-03-27 DOI:10.1145/3555776.3577767
Jui Mhatre, Ahyoung Lee
{"title":"协同云网络中最优延迟-能量动态卸载方案","authors":"Jui Mhatre, Ahyoung Lee","doi":"10.1145/3555776.3577767","DOIUrl":null,"url":null,"abstract":"Growing technologies like virtualization and artificial intelligence have become more popular on mobile devices. But lack of resources faced for processing these applications is still major hurdle. Collaborative edge and cloud computing are one of the solutions to this problem. We have proposed a multi-period deep deterministic policy gradient (MP-DDPG) algorithm to find an optimal offloading policy by partitioning the task and offloading it to the collaborative cloud and edge network to reduce energy consumption. Our results show that MP-DDPG achieves the minimum latency and energy consumption in the collaborative cloud network.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"59 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MP-DDPG: Optimal Latency-Energy Dynamic Offloading Scheme in Collaborative Cloud Networks\",\"authors\":\"Jui Mhatre, Ahyoung Lee\",\"doi\":\"10.1145/3555776.3577767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growing technologies like virtualization and artificial intelligence have become more popular on mobile devices. But lack of resources faced for processing these applications is still major hurdle. Collaborative edge and cloud computing are one of the solutions to this problem. We have proposed a multi-period deep deterministic policy gradient (MP-DDPG) algorithm to find an optimal offloading policy by partitioning the task and offloading it to the collaborative cloud and edge network to reduce energy consumption. Our results show that MP-DDPG achieves the minimum latency and energy consumption in the collaborative cloud network.\",\"PeriodicalId\":42971,\"journal\":{\"name\":\"Applied Computing Review\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555776.3577767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

像虚拟化和人工智能这样的新兴技术在移动设备上变得越来越流行。但缺乏处理这些申请所需的资源仍然是主要障碍。协作边缘和云计算是这个问题的解决方案之一。我们提出了一种多周期深度确定性策略梯度(MP-DDPG)算法,通过划分任务并将其卸载到协作云和边缘网络来寻找最优卸载策略,以降低能耗。结果表明,MP-DDPG在协同云网络中实现了最小的延迟和能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MP-DDPG: Optimal Latency-Energy Dynamic Offloading Scheme in Collaborative Cloud Networks
Growing technologies like virtualization and artificial intelligence have become more popular on mobile devices. But lack of resources faced for processing these applications is still major hurdle. Collaborative edge and cloud computing are one of the solutions to this problem. We have proposed a multi-period deep deterministic policy gradient (MP-DDPG) algorithm to find an optimal offloading policy by partitioning the task and offloading it to the collaborative cloud and edge network to reduce energy consumption. Our results show that MP-DDPG achieves the minimum latency and energy consumption in the collaborative cloud network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
期刊最新文献
DIWS-LCR-Rot-hop++: A Domain-Independent Word Selector for Cross-Domain Aspect-Based Sentiment Classification Leveraging Semantic Technologies for Collaborative Inference of Threatening IoT Dependencies Relating Optimal Repairs in Ontology Engineering with Contraction Operations in Belief Change Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning Elastic Data Binning: Time-Series Sketching for Time-Domain Astrophysics Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1