{"title":"代数闭包存在性的Artin定理","authors":"Christoph Schwarzweller","doi":"10.2478/forma-2022-0014","DOIUrl":null,"url":null,"abstract":"Summary This is the first part of a two-part article formalizing existence and uniqueness of algebraic closures using the Mizar system [1], [2]. Our proof follows Artin’s classical one as presented by Lang in [3]. In this first part we prove that for a given field F there exists a field extension E such that every non-constant polynomial p ∈ F [X] has a root in E. Artin’s proof applies Kronecker’s construction to each polynomial p ∈ F [X]\\F simultaneously. To do so we need the polynomial ring F [X1, X2, ...] with infinitely many variables, one for each polynomal p ∈ F [X]\\F . The desired field extension E then is F [X1, X2, ...]\\I, where I is a maximal ideal generated by all non-constant polynomials p ∈ F [X]. Note, that to show that I is maximal Zorn’s lemma has to be applied. In the second part this construction is iterated giving an infinite sequence of fields, whose union establishes a field extension A of F, in which every non-constant polynomial p ∈ A[X] has a root. The field of algebraic elements of A then is an algebraic closure of F . To prove uniqueness of algebraic closures, e.g. that two algebraic closures of F are isomorphic over F, the technique of extending monomorphisms is applied: a monomorphism F → A, where A is an algebraic closure of F can be extended to a monomorphism E → A, where E is any algebraic extension of F . In case that E is algebraically closed this monomorphism is an isomorphism. Note that the existence of the extended monomorphism again relies on Zorn’s lemma.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Artin’s Theorem Towards the Existence of Algebraic Closures\",\"authors\":\"Christoph Schwarzweller\",\"doi\":\"10.2478/forma-2022-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary This is the first part of a two-part article formalizing existence and uniqueness of algebraic closures using the Mizar system [1], [2]. Our proof follows Artin’s classical one as presented by Lang in [3]. In this first part we prove that for a given field F there exists a field extension E such that every non-constant polynomial p ∈ F [X] has a root in E. Artin’s proof applies Kronecker’s construction to each polynomial p ∈ F [X]\\\\F simultaneously. To do so we need the polynomial ring F [X1, X2, ...] with infinitely many variables, one for each polynomal p ∈ F [X]\\\\F . The desired field extension E then is F [X1, X2, ...]\\\\I, where I is a maximal ideal generated by all non-constant polynomials p ∈ F [X]. Note, that to show that I is maximal Zorn’s lemma has to be applied. In the second part this construction is iterated giving an infinite sequence of fields, whose union establishes a field extension A of F, in which every non-constant polynomial p ∈ A[X] has a root. The field of algebraic elements of A then is an algebraic closure of F . To prove uniqueness of algebraic closures, e.g. that two algebraic closures of F are isomorphic over F, the technique of extending monomorphisms is applied: a monomorphism F → A, where A is an algebraic closure of F can be extended to a monomorphism E → A, where E is any algebraic extension of F . In case that E is algebraically closed this monomorphism is an isomorphism. Note that the existence of the extended monomorphism again relies on Zorn’s lemma.\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2022-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2022-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Artin’s Theorem Towards the Existence of Algebraic Closures
Summary This is the first part of a two-part article formalizing existence and uniqueness of algebraic closures using the Mizar system [1], [2]. Our proof follows Artin’s classical one as presented by Lang in [3]. In this first part we prove that for a given field F there exists a field extension E such that every non-constant polynomial p ∈ F [X] has a root in E. Artin’s proof applies Kronecker’s construction to each polynomial p ∈ F [X]\F simultaneously. To do so we need the polynomial ring F [X1, X2, ...] with infinitely many variables, one for each polynomal p ∈ F [X]\F . The desired field extension E then is F [X1, X2, ...]\I, where I is a maximal ideal generated by all non-constant polynomials p ∈ F [X]. Note, that to show that I is maximal Zorn’s lemma has to be applied. In the second part this construction is iterated giving an infinite sequence of fields, whose union establishes a field extension A of F, in which every non-constant polynomial p ∈ A[X] has a root. The field of algebraic elements of A then is an algebraic closure of F . To prove uniqueness of algebraic closures, e.g. that two algebraic closures of F are isomorphic over F, the technique of extending monomorphisms is applied: a monomorphism F → A, where A is an algebraic closure of F can be extended to a monomorphism E → A, where E is any algebraic extension of F . In case that E is algebraically closed this monomorphism is an isomorphism. Note that the existence of the extended monomorphism again relies on Zorn’s lemma.
期刊介绍:
Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.