pH值降低和盐度升高对潮间带蟹(Minuca mordax)生理机能的影响

IF 0.9 4区 生物学 Q3 MARINE & FRESHWATER BIOLOGY Marine and Freshwater Behaviour and Physiology Pub Date : 2019-09-03 DOI:10.1080/10236244.2019.1681898
Tayna Figueiredo Strefezza, Isabel Marques De Andrade, Alessandra Augusto
{"title":"pH值降低和盐度升高对潮间带蟹(Minuca mordax)生理机能的影响","authors":"Tayna Figueiredo Strefezza, Isabel Marques De Andrade, Alessandra Augusto","doi":"10.1080/10236244.2019.1681898","DOIUrl":null,"url":null,"abstract":"ABSTRACT Minuca mordax is a model for studies on ocean acidification and sea-level rise because lives in mangroves and riverbanks with low pH. We investigated the physiology of the crabs exposed to differents pH (6.5 and 5.8) and salinity (25, 30, 35, 40 45S). There was not mortality or alterations in the hypo-osmoregulation, suggesting that the factors did not affect salt absorption/secretion. Reduced pH changed metabolism, ammonia excretion, and hepatosomatic index in relation to the animals kept in control pH. At elevated salinities, metabolism increased when animals were kept in control pH, but it decreased when they were exposed to acidified pH. energy substrate, varied between proteins to a mixture of proteins and lipids. Important physiological parameters, related to the catabolism of amino acids and to the energy demand are changed and the consequences might include alterations in growth and reproduction due to the energy channeling to limiting processes of homeostasis.","PeriodicalId":18210,"journal":{"name":"Marine and Freshwater Behaviour and Physiology","volume":"26 1","pages":"241 - 254"},"PeriodicalIF":0.9000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Reduced pH and elevated salinities affect the physiology of intertidal crab Minuca mordax (Crustacea, Decapoda)\",\"authors\":\"Tayna Figueiredo Strefezza, Isabel Marques De Andrade, Alessandra Augusto\",\"doi\":\"10.1080/10236244.2019.1681898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Minuca mordax is a model for studies on ocean acidification and sea-level rise because lives in mangroves and riverbanks with low pH. We investigated the physiology of the crabs exposed to differents pH (6.5 and 5.8) and salinity (25, 30, 35, 40 45S). There was not mortality or alterations in the hypo-osmoregulation, suggesting that the factors did not affect salt absorption/secretion. Reduced pH changed metabolism, ammonia excretion, and hepatosomatic index in relation to the animals kept in control pH. At elevated salinities, metabolism increased when animals were kept in control pH, but it decreased when they were exposed to acidified pH. energy substrate, varied between proteins to a mixture of proteins and lipids. Important physiological parameters, related to the catabolism of amino acids and to the energy demand are changed and the consequences might include alterations in growth and reproduction due to the energy channeling to limiting processes of homeostasis.\",\"PeriodicalId\":18210,\"journal\":{\"name\":\"Marine and Freshwater Behaviour and Physiology\",\"volume\":\"26 1\",\"pages\":\"241 - 254\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine and Freshwater Behaviour and Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10236244.2019.1681898\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine and Freshwater Behaviour and Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10236244.2019.1681898","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 8

摘要

摘要:海蟹(Minuca mordax)是研究海洋酸化和海平面上升的模型,因为它生活在低pH的红树林和河岸。我们研究了不同pH(6.5和5.8)和盐度(25、30、35、40 45S)下海蟹的生理特征。低渗透调节无死亡或改变,表明这些因素不影响盐的吸收/分泌。与控制pH值的动物相比,降低的pH值改变了动物的代谢、氨排泄和肝体指数。在升高的盐度下,动物在控制pH值时代谢增加,但当它们暴露于酸化的pH值时代谢减少。能量底物在蛋白质和蛋白质和脂质的混合物之间变化。与氨基酸分解代谢和能量需求有关的重要生理参数发生了变化,其后果可能包括由于能量输送到限制稳态过程而导致的生长和繁殖的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduced pH and elevated salinities affect the physiology of intertidal crab Minuca mordax (Crustacea, Decapoda)
ABSTRACT Minuca mordax is a model for studies on ocean acidification and sea-level rise because lives in mangroves and riverbanks with low pH. We investigated the physiology of the crabs exposed to differents pH (6.5 and 5.8) and salinity (25, 30, 35, 40 45S). There was not mortality or alterations in the hypo-osmoregulation, suggesting that the factors did not affect salt absorption/secretion. Reduced pH changed metabolism, ammonia excretion, and hepatosomatic index in relation to the animals kept in control pH. At elevated salinities, metabolism increased when animals were kept in control pH, but it decreased when they were exposed to acidified pH. energy substrate, varied between proteins to a mixture of proteins and lipids. Important physiological parameters, related to the catabolism of amino acids and to the energy demand are changed and the consequences might include alterations in growth and reproduction due to the energy channeling to limiting processes of homeostasis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine and Freshwater Behaviour and Physiology
Marine and Freshwater Behaviour and Physiology 生物-海洋与淡水生物学
CiteScore
2.10
自引率
0.00%
发文量
9
审稿时长
>12 weeks
期刊介绍: Marine and Freshwater Behaviour and Physiology is devoted to the publication of papers covering field and laboratory research into all aspects of the behaviour and physiology of all marine and freshwater animals within the contexts of ecology, evolution and conservation. As the living resources of the world’s oceans, rivers and lakes are attracting increasing attention as food sources for humans and for their role in global ecology, the journal will also publish the results of research in the areas of fisheries biology and technology where the behaviour and physiology described have clear links to the contexts mentioned above. The journal will accept for publication Research Articles, Reviews, Rapid Communications and Technical Notes (see Instructions for authors for details). In addition, Editorials, Opinions and Book Reviews (invited and suggested) will also occasionally be published. Suggestions to the Editor-In-Chief for Special Issues are encouraged and will be considered on an ad hoc basis. With the goal of supporting early career researchers, the journal particularly invites submissions from graduate students and post-doctoral researchers. In addition to recognising the time constraints and logistical limitations their research often faces, and their particular need for a prompt review process, accepted articles by such researchers will be given prominence within the journal (see Instructions for authors for details).
期刊最新文献
To move or not to move: taxis responses of the marine acoel symsagittifera roscoffensis to different stimuli Movement and energy expenditure in juvenile green abalone ( Haliotis fulgens ) exposed to hyperthermia, hypoxia, and both conditions A modified CTAB method for high-molecular-weight DNA preparation from deep-sea holothurians Electroreception by small-spotted catshark (Scyliorhinus canicula) embryos in relation to predator detection and avoidance Effects of severe hypoxia and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) knock-down on its gene expression, activity, subcellular localization, and apoptosis in gills of the shrimp Penaeus vannamei
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1