Corning0120高铅玻璃承受冲击载荷

B. Farfan, W. Reinhart, S. Alexander
{"title":"Corning0120高铅玻璃承受冲击载荷","authors":"B. Farfan, W. Reinhart, S. Alexander","doi":"10.1115/hvis2019-031","DOIUrl":null,"url":null,"abstract":"\n Equation of state properties were studied for the high-lead glass Corning 0120, which is a potash-soda-lead glass also referred to as G12. This glass, which contains approximately 30% PbO by weight and has a density, ρo, of 3.034 g/cm3 possesses properties suitable for many applications in industry such as optical components for space exploration instrumentation. Further understanding of its mechanical properties is desired for more complex applications in various fields, including applications where the glass may experience high-pressure shock loading. In this work plate impact experiments were conducted to determine the dynamic response of Corning 0120 at high stress levels. Tests were conducted over the pressure range from approximately 5 to 24 GPa utilizing the 90 mm bore single-stage powder driven gas gun at the Sandia National Laboratories STAR Facility. For this study, we used one-inch diameter Corning 0120 glass samples of two different thicknesses (3 mm and 7 mm) to use the evolution of the shock wave propagation through the material for analysis. The time-resolved material response was measured by means of a Velocity Interferometer System for Any Reflector system (VISAR). Results will be presented detailing the high-pressure shock loading response characteristics of the high-lead glass Corning 0120. Comparisons are made with similar results for lead free glass to assess the most prominent changes compared to lower density glasses and other lead filled glasses.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corning0120 High-Lead Glass Subject to Shock Loading\",\"authors\":\"B. Farfan, W. Reinhart, S. Alexander\",\"doi\":\"10.1115/hvis2019-031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Equation of state properties were studied for the high-lead glass Corning 0120, which is a potash-soda-lead glass also referred to as G12. This glass, which contains approximately 30% PbO by weight and has a density, ρo, of 3.034 g/cm3 possesses properties suitable for many applications in industry such as optical components for space exploration instrumentation. Further understanding of its mechanical properties is desired for more complex applications in various fields, including applications where the glass may experience high-pressure shock loading. In this work plate impact experiments were conducted to determine the dynamic response of Corning 0120 at high stress levels. Tests were conducted over the pressure range from approximately 5 to 24 GPa utilizing the 90 mm bore single-stage powder driven gas gun at the Sandia National Laboratories STAR Facility. For this study, we used one-inch diameter Corning 0120 glass samples of two different thicknesses (3 mm and 7 mm) to use the evolution of the shock wave propagation through the material for analysis. The time-resolved material response was measured by means of a Velocity Interferometer System for Any Reflector system (VISAR). Results will be presented detailing the high-pressure shock loading response characteristics of the high-lead glass Corning 0120. Comparisons are made with similar results for lead free glass to assess the most prominent changes compared to lower density glasses and other lead filled glasses.\",\"PeriodicalId\":6596,\"journal\":{\"name\":\"2019 15th Hypervelocity Impact Symposium\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th Hypervelocity Impact Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/hvis2019-031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了高铅玻璃康宁0120的状态性质方程,该玻璃是一种钾盐铅玻璃,也称为G12。这种玻璃含有约30%的PbO重量,其密度ρ为3.034 g/cm3,具有适用于许多工业应用的特性,例如空间探测仪器的光学元件。需要进一步了解其机械性能,以便在各种领域进行更复杂的应用,包括玻璃可能经历高压冲击载荷的应用。在此工作板的冲击试验,以确定动态响应康宁0120在高应力水平。在桑迪亚国家实验室STAR设施中,使用90毫米口径单级粉末驱动气枪,在大约5至24 GPa的压力范围内进行了测试。在本研究中,我们使用两种不同厚度(3mm和7mm)的一英寸直径的康宁0120玻璃样品,使用冲击波在材料中的传播演变进行分析。利用任意反射系统的速度干涉仪系统(VISAR)测量了材料的时间分辨响应。结果将详细介绍康宁0120高铅玻璃的高压冲击负载响应特性。与无铅玻璃的类似结果进行比较,以评估与低密度玻璃和其他含铅玻璃相比最显著的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corning0120 High-Lead Glass Subject to Shock Loading
Equation of state properties were studied for the high-lead glass Corning 0120, which is a potash-soda-lead glass also referred to as G12. This glass, which contains approximately 30% PbO by weight and has a density, ρo, of 3.034 g/cm3 possesses properties suitable for many applications in industry such as optical components for space exploration instrumentation. Further understanding of its mechanical properties is desired for more complex applications in various fields, including applications where the glass may experience high-pressure shock loading. In this work plate impact experiments were conducted to determine the dynamic response of Corning 0120 at high stress levels. Tests were conducted over the pressure range from approximately 5 to 24 GPa utilizing the 90 mm bore single-stage powder driven gas gun at the Sandia National Laboratories STAR Facility. For this study, we used one-inch diameter Corning 0120 glass samples of two different thicknesses (3 mm and 7 mm) to use the evolution of the shock wave propagation through the material for analysis. The time-resolved material response was measured by means of a Velocity Interferometer System for Any Reflector system (VISAR). Results will be presented detailing the high-pressure shock loading response characteristics of the high-lead glass Corning 0120. Comparisons are made with similar results for lead free glass to assess the most prominent changes compared to lower density glasses and other lead filled glasses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact Modeling for the Double Asteroid Redirection Test Mission Bulking as a Mechanism in the Failure of Advanced Ceramics Effects of Additional Body on Jet Velocity of Hyper-cumulation Assessment and Validation of Collision “Consequence” Method of Assessing Orbital Regime Risk Posed by Potential Satellite Conjunctions Dynamic response of graphene and yttria-stabilized zirconia (YSZ) composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1