M. Paetzel, F. Danel, L. de Castro, S. Mosimann, M.G.P. Page, N. Strynadka
{"title":"D类内酰胺酶OXA-10的晶体结构。","authors":"M. Paetzel, F. Danel, L. de Castro, S. Mosimann, M.G.P. Page, N. Strynadka","doi":"10.2210/pdb1fof/pdb","DOIUrl":null,"url":null,"abstract":"We report the crystal structure of a class D beta-lactamase, the broad spectrum enzyme OXA-10 from Pseudomonas aeruginosa at 2.0 A resolution. There are significant differences between the overall fold observed in this structure and those of the evolutionarily related class A and class C beta-lactamases. Furthermore, the structure suggests the unique, cation mediated formation of a homodimer. Kinetic and hydrodynamic data shows that the dimer is a relevant species in solution and is the more active form of the enzyme. Comparison of the molecular details of the active sites of the class A and class C enzymes with the OXA-10 structure reveals that there is no counterpart in OXA-10 to the residues proposed to act as general bases in either of these enzymes (Glu 166 and Tyr 150, respectively). Our structures of the native and chloride inhibited forms of OXA-10 suggest that the class D enzymes have evolved a distinct catalytic mechanism for beta-lactam hydrolysis. Clinical variants of OXA-10 are also discussed in light of the structure.","PeriodicalId":18848,"journal":{"name":"Nature Structural Biology","volume":"34 1","pages":"918-25"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Crystal structure of the class D beta-lactamase OXA-10.\",\"authors\":\"M. Paetzel, F. Danel, L. de Castro, S. Mosimann, M.G.P. Page, N. Strynadka\",\"doi\":\"10.2210/pdb1fof/pdb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the crystal structure of a class D beta-lactamase, the broad spectrum enzyme OXA-10 from Pseudomonas aeruginosa at 2.0 A resolution. There are significant differences between the overall fold observed in this structure and those of the evolutionarily related class A and class C beta-lactamases. Furthermore, the structure suggests the unique, cation mediated formation of a homodimer. Kinetic and hydrodynamic data shows that the dimer is a relevant species in solution and is the more active form of the enzyme. Comparison of the molecular details of the active sites of the class A and class C enzymes with the OXA-10 structure reveals that there is no counterpart in OXA-10 to the residues proposed to act as general bases in either of these enzymes (Glu 166 and Tyr 150, respectively). Our structures of the native and chloride inhibited forms of OXA-10 suggest that the class D enzymes have evolved a distinct catalytic mechanism for beta-lactam hydrolysis. Clinical variants of OXA-10 are also discussed in light of the structure.\",\"PeriodicalId\":18848,\"journal\":{\"name\":\"Nature Structural Biology\",\"volume\":\"34 1\",\"pages\":\"918-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2210/pdb1fof/pdb\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2210/pdb1fof/pdb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crystal structure of the class D beta-lactamase OXA-10.
We report the crystal structure of a class D beta-lactamase, the broad spectrum enzyme OXA-10 from Pseudomonas aeruginosa at 2.0 A resolution. There are significant differences between the overall fold observed in this structure and those of the evolutionarily related class A and class C beta-lactamases. Furthermore, the structure suggests the unique, cation mediated formation of a homodimer. Kinetic and hydrodynamic data shows that the dimer is a relevant species in solution and is the more active form of the enzyme. Comparison of the molecular details of the active sites of the class A and class C enzymes with the OXA-10 structure reveals that there is no counterpart in OXA-10 to the residues proposed to act as general bases in either of these enzymes (Glu 166 and Tyr 150, respectively). Our structures of the native and chloride inhibited forms of OXA-10 suggest that the class D enzymes have evolved a distinct catalytic mechanism for beta-lactam hydrolysis. Clinical variants of OXA-10 are also discussed in light of the structure.