具有超分辨率选择单元的深度卷积神经网络

Jae-Seok Choi, Munchurl Kim
{"title":"具有超分辨率选择单元的深度卷积神经网络","authors":"Jae-Seok Choi, Munchurl Kim","doi":"10.1109/CVPRW.2017.153","DOIUrl":null,"url":null,"abstract":"Rectified linear units (ReLU) are known to be effective in many deep learning methods. Inspired by linear-mapping technique used in other super-resolution (SR) methods, we reinterpret ReLU into point-wise multiplication of an identity mapping and a switch, and finally present a novel nonlinear unit, called a selection unit (SU). While conventional ReLU has no direct control through which data is passed, the proposed SU optimizes this on-off switching control, and is therefore capable of better handling nonlinearity functionality than ReLU in a more flexible way. Our proposed deep network with SUs, called SelNet, was top-5th ranked in NTIRE2017 Challenge, which has a much lower computation complexity compared to the top-4 entries. Further experiment results show that our proposed SelNet outperforms our baseline only with ReLU (without SUs), and other state-of-the-art deep-learning-based SR methods.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"37 4 1","pages":"1150-1156"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"A Deep Convolutional Neural Network with Selection Units for Super-Resolution\",\"authors\":\"Jae-Seok Choi, Munchurl Kim\",\"doi\":\"10.1109/CVPRW.2017.153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rectified linear units (ReLU) are known to be effective in many deep learning methods. Inspired by linear-mapping technique used in other super-resolution (SR) methods, we reinterpret ReLU into point-wise multiplication of an identity mapping and a switch, and finally present a novel nonlinear unit, called a selection unit (SU). While conventional ReLU has no direct control through which data is passed, the proposed SU optimizes this on-off switching control, and is therefore capable of better handling nonlinearity functionality than ReLU in a more flexible way. Our proposed deep network with SUs, called SelNet, was top-5th ranked in NTIRE2017 Challenge, which has a much lower computation complexity compared to the top-4 entries. Further experiment results show that our proposed SelNet outperforms our baseline only with ReLU (without SUs), and other state-of-the-art deep-learning-based SR methods.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"37 4 1\",\"pages\":\"1150-1156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

摘要

整流线性单元(ReLU)在许多深度学习方法中都是有效的。受其他超分辨率(SR)方法中使用的线性映射技术的启发,我们将ReLU重新解释为单位映射和开关的逐点乘法,最后提出了一种新的非线性单元,称为选择单元(SU)。传统的ReLU没有数据传递的直接控制,而该SU优化了这种开关控制,因此能够以更灵活的方式比ReLU更好地处理非线性功能。我们提出的带有SUs的深度网络SelNet在NTIRE2017挑战赛中排名前5,与前4名的参赛作品相比,其计算复杂度要低得多。进一步的实验结果表明,我们提出的SelNet仅在使用ReLU(没有SUs)和其他最先进的基于深度学习的SR方法时才优于我们的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Convolutional Neural Network with Selection Units for Super-Resolution
Rectified linear units (ReLU) are known to be effective in many deep learning methods. Inspired by linear-mapping technique used in other super-resolution (SR) methods, we reinterpret ReLU into point-wise multiplication of an identity mapping and a switch, and finally present a novel nonlinear unit, called a selection unit (SU). While conventional ReLU has no direct control through which data is passed, the proposed SU optimizes this on-off switching control, and is therefore capable of better handling nonlinearity functionality than ReLU in a more flexible way. Our proposed deep network with SUs, called SelNet, was top-5th ranked in NTIRE2017 Challenge, which has a much lower computation complexity compared to the top-4 entries. Further experiment results show that our proposed SelNet outperforms our baseline only with ReLU (without SUs), and other state-of-the-art deep-learning-based SR methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring Energy Expenditure in Sports by Thermal Video Analysis Court-Based Volleyball Video Summarization Focusing on Rally Scene Generating 5D Light Fields in Scattering Media for Representing 3D Images Application of Computer Vision and Vector Space Model for Tactical Movement Classification in Badminton A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1