2000-2015年中国卫星衍生的独立于地面测量的月度PM2.5质量浓度数据集

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Big Earth Data Pub Date : 2021-07-29 DOI:10.1080/20964471.2021.1918908
Ying Zhang, Zhengqiang Li, Yuanyuan Wei, Zongren Peng
{"title":"2000-2015年中国卫星衍生的独立于地面测量的月度PM2.5质量浓度数据集","authors":"Ying Zhang, Zhengqiang Li, Yuanyuan Wei, Zongren Peng","doi":"10.1080/20964471.2021.1918908","DOIUrl":null,"url":null,"abstract":"ABSTRACT Following the accelerated development of urbanization and industrialization, atmospheric particulate matter has become a significant threat to public health globally. Environmental health studies usually use the mass concentration of fine particles (PM2.5) as a base data to predict the health risks of particulate exposure. However, PM2.5 data from ground monitoring stations in China has not been provided until January 2013 by the Ministry of Environmental Protection of China. Hence, an alternative dataset of PM2.5 spatiotemporal distributions extending to years earlier than 2013 is urgently needed, which is of great significance to atmospheric environment assessment and pollution prevention and control. Atmospheric aerosol products by the moderate-resolution imaging spectroradiometer (MODIS) have been released since 2000, which provides the possibility to reconstruct historical PM2.5. However, most current methods do not have the ability to estimate PM2.5 mass concentration independently of ground observations. The PM2.5 mass concentration data set produced by PM2.5 remote sensing (PMRS) model based on physical processes does not depend on the ground observations, and also is not affected by the uncertainty of model emission sources or the completeness of chemical reaction mechanism. These ensure that the point-by-point validation for PM2.5 mass concentration data is more convincing, and the dataset can also be further used for model assimilation and artificial intelligence training to improve their predictions. In this study, we calculate the monthly PM2.5 mass concentration near the ground over land of China using aerosol inversion products (aerosol optical depth and fine-mode fraction) of MODIS and meteorological data (boundary layer height & relative humidity) provided by the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) data set. The results show that, in China, 6 pollution centers mainly concentrated in the central and eastern regions. The highest PM2.5 mass concentration occurred in winter, whereas the pollution range was larger in summer. There are 63.4% of validation sites with biases within ±20 μg m−3, and the expected error is as ±(15 μg m−3 + 30%) enveloped by the monthly mean PM2.5 mass concentrations. The monthly PM2.5 is stored as NETCDF format, with a spatial resolution of 1°×1°. The published data is available in http://www.dx.doi.org/10.11922/sciencedb.j00076.00061.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"57 1","pages":"633 - 649"},"PeriodicalIF":4.2000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A satellite-derived, ground-measurement-independent monthly PM2.5 mass concentration dataset over China during 2000–2015\",\"authors\":\"Ying Zhang, Zhengqiang Li, Yuanyuan Wei, Zongren Peng\",\"doi\":\"10.1080/20964471.2021.1918908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Following the accelerated development of urbanization and industrialization, atmospheric particulate matter has become a significant threat to public health globally. Environmental health studies usually use the mass concentration of fine particles (PM2.5) as a base data to predict the health risks of particulate exposure. However, PM2.5 data from ground monitoring stations in China has not been provided until January 2013 by the Ministry of Environmental Protection of China. Hence, an alternative dataset of PM2.5 spatiotemporal distributions extending to years earlier than 2013 is urgently needed, which is of great significance to atmospheric environment assessment and pollution prevention and control. Atmospheric aerosol products by the moderate-resolution imaging spectroradiometer (MODIS) have been released since 2000, which provides the possibility to reconstruct historical PM2.5. However, most current methods do not have the ability to estimate PM2.5 mass concentration independently of ground observations. The PM2.5 mass concentration data set produced by PM2.5 remote sensing (PMRS) model based on physical processes does not depend on the ground observations, and also is not affected by the uncertainty of model emission sources or the completeness of chemical reaction mechanism. These ensure that the point-by-point validation for PM2.5 mass concentration data is more convincing, and the dataset can also be further used for model assimilation and artificial intelligence training to improve their predictions. In this study, we calculate the monthly PM2.5 mass concentration near the ground over land of China using aerosol inversion products (aerosol optical depth and fine-mode fraction) of MODIS and meteorological data (boundary layer height & relative humidity) provided by the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) data set. The results show that, in China, 6 pollution centers mainly concentrated in the central and eastern regions. The highest PM2.5 mass concentration occurred in winter, whereas the pollution range was larger in summer. There are 63.4% of validation sites with biases within ±20 μg m−3, and the expected error is as ±(15 μg m−3 + 30%) enveloped by the monthly mean PM2.5 mass concentrations. The monthly PM2.5 is stored as NETCDF format, with a spatial resolution of 1°×1°. The published data is available in http://www.dx.doi.org/10.11922/sciencedb.j00076.00061.\",\"PeriodicalId\":8765,\"journal\":{\"name\":\"Big Earth Data\",\"volume\":\"57 1\",\"pages\":\"633 - 649\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2021-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Earth Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/20964471.2021.1918908\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2021.1918908","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

随着城市化和工业化进程的加快,大气颗粒物已成为全球公共健康的重大威胁。环境卫生研究通常使用细颗粒物(PM2.5)的质量浓度作为基础数据来预测颗粒物暴露的健康风险。然而,中国环境保护部直到2013年1月才提供了中国地面监测站的PM2.5数据。因此,迫切需要一个可替代的2013年以前的PM2.5时空分布数据集,这对大气环境评价和污染防治具有重要意义。2000年以来,中分辨率成像光谱辐射计(MODIS)发布了大气气溶胶产品,为重建历史PM2.5提供了可能。然而,目前大多数方法无法独立于地面观测估计PM2.5质量浓度。基于物理过程的PM2.5遥感(PMRS)模式产生的PM2.5质量浓度数据集不依赖于地面观测,也不受模式排放源不确定性和化学反应机理完整性的影响。这些保证了PM2.5质量浓度数据的逐点验证更有说服力,数据集也可以进一步用于模型同化和人工智能训练,以提高他们的预测。本文利用MODIS的气溶胶反演产品(气溶胶光学深度和精细模式分数)和MERRA-2数据集提供的气象数据(边界层高度和相对湿度)计算了中国陆地近地面PM2.5的月质量浓度。结果表明:中国6个污染中心主要集中在中东部地区;PM2.5质量浓度在冬季最高,污染范围在夏季较大。63.4%的验证点偏差在±20 μg m−3以内,PM2.5月平均质量浓度覆盖的期望误差为±(15 μg m−3 + 30%)。月度PM2.5以NETCDF格式存储,空间分辨率为1°×1°。发表的数据可在http://www.dx.doi.org/10.11922/sciencedb.j00076.00061上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A satellite-derived, ground-measurement-independent monthly PM2.5 mass concentration dataset over China during 2000–2015
ABSTRACT Following the accelerated development of urbanization and industrialization, atmospheric particulate matter has become a significant threat to public health globally. Environmental health studies usually use the mass concentration of fine particles (PM2.5) as a base data to predict the health risks of particulate exposure. However, PM2.5 data from ground monitoring stations in China has not been provided until January 2013 by the Ministry of Environmental Protection of China. Hence, an alternative dataset of PM2.5 spatiotemporal distributions extending to years earlier than 2013 is urgently needed, which is of great significance to atmospheric environment assessment and pollution prevention and control. Atmospheric aerosol products by the moderate-resolution imaging spectroradiometer (MODIS) have been released since 2000, which provides the possibility to reconstruct historical PM2.5. However, most current methods do not have the ability to estimate PM2.5 mass concentration independently of ground observations. The PM2.5 mass concentration data set produced by PM2.5 remote sensing (PMRS) model based on physical processes does not depend on the ground observations, and also is not affected by the uncertainty of model emission sources or the completeness of chemical reaction mechanism. These ensure that the point-by-point validation for PM2.5 mass concentration data is more convincing, and the dataset can also be further used for model assimilation and artificial intelligence training to improve their predictions. In this study, we calculate the monthly PM2.5 mass concentration near the ground over land of China using aerosol inversion products (aerosol optical depth and fine-mode fraction) of MODIS and meteorological data (boundary layer height & relative humidity) provided by the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) data set. The results show that, in China, 6 pollution centers mainly concentrated in the central and eastern regions. The highest PM2.5 mass concentration occurred in winter, whereas the pollution range was larger in summer. There are 63.4% of validation sites with biases within ±20 μg m−3, and the expected error is as ±(15 μg m−3 + 30%) enveloped by the monthly mean PM2.5 mass concentrations. The monthly PM2.5 is stored as NETCDF format, with a spatial resolution of 1°×1°. The published data is available in http://www.dx.doi.org/10.11922/sciencedb.j00076.00061.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
期刊最新文献
A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data The first 10 m resolution thermokarst lake and pond dataset for the Lena Basin in the 2020 thawing season A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020 An application of 1D convolution and deep learning to remote sensing modelling of Secchi depth in the northern Adriatic Sea A mediation system for continuous spatial queries on a unified schema using Apache Spark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1