{"title":"广义Wigner矩阵拉普拉斯算子的谱性质","authors":"Anirban Chatterjee, R. S. Hazra","doi":"10.1142/s2010326322500265","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the spectrum of a Laplacian matrix, also known as Markov matrices where the entries of the matrix are independent but have a variance profile. Motivated by recent works on generalized Wigner matrices we assume that the variance profile gives rise to a sequence of graphons. Under the assumption that these graphons converge, we show that the limiting spectral distribution converges. We give an expression for the moments of the limiting measure in terms of graph homomorphisms. In some special cases, we identify the limit explicitly. We also study the spectral norm and derive the order of the maximum eigenvalue. We show that our results cover Laplacians of various random graphs including inhomogeneous Erdős–Rényi random graphs, sparse W-random graphs, stochastic block matrices and constrained random graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spectral properties for the Laplacian of a generalized Wigner matrix\",\"authors\":\"Anirban Chatterjee, R. S. Hazra\",\"doi\":\"10.1142/s2010326322500265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the spectrum of a Laplacian matrix, also known as Markov matrices where the entries of the matrix are independent but have a variance profile. Motivated by recent works on generalized Wigner matrices we assume that the variance profile gives rise to a sequence of graphons. Under the assumption that these graphons converge, we show that the limiting spectral distribution converges. We give an expression for the moments of the limiting measure in terms of graph homomorphisms. In some special cases, we identify the limit explicitly. We also study the spectral norm and derive the order of the maximum eigenvalue. We show that our results cover Laplacians of various random graphs including inhomogeneous Erdős–Rényi random graphs, sparse W-random graphs, stochastic block matrices and constrained random graphs.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectral properties for the Laplacian of a generalized Wigner matrix
In this paper, we consider the spectrum of a Laplacian matrix, also known as Markov matrices where the entries of the matrix are independent but have a variance profile. Motivated by recent works on generalized Wigner matrices we assume that the variance profile gives rise to a sequence of graphons. Under the assumption that these graphons converge, we show that the limiting spectral distribution converges. We give an expression for the moments of the limiting measure in terms of graph homomorphisms. In some special cases, we identify the limit explicitly. We also study the spectral norm and derive the order of the maximum eigenvalue. We show that our results cover Laplacians of various random graphs including inhomogeneous Erdős–Rényi random graphs, sparse W-random graphs, stochastic block matrices and constrained random graphs.