从重做日志中提取事件日志

IF 7.4 3区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Business & Information Systems Engineering Pub Date : 2021-01-01 DOI:10.52825/bis.v1i.66
Dorina Bano, Tom Lichtenstein, Finn Klessascheck, M. Weske
{"title":"从重做日志中提取事件日志","authors":"Dorina Bano, Tom Lichtenstein, Finn Klessascheck, M. Weske","doi":"10.52825/bis.v1i.66","DOIUrl":null,"url":null,"abstract":"Process mining is widely adopted in organizations to gain deep insights about running business processes. This can be achieved by applying different process mining techniques like discovery, conformance checking, and performance analysis. These techniques are applied on event logs, which need to be extracted from the organization’s databases beforehand. This not only implies access to databases, but also detailed knowledge about the database schema, which is often not available. In many real-world scenarios, however, process execution data is available as redo logs. Such logs are used to bring a database into a consistent state in case of a system failure. This paper proposes a semi-automatic approach to extract an event log from redo logs alone. It does not require access to the database or knowledge of the databaseschema. The feasibility of the proposed approach is evaluated on two synthetic redo logs.","PeriodicalId":56020,"journal":{"name":"Business & Information Systems Engineering","volume":"163 1","pages":"73-82"},"PeriodicalIF":7.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Database-Less Extraction of Event Logs from Redo Logs\",\"authors\":\"Dorina Bano, Tom Lichtenstein, Finn Klessascheck, M. Weske\",\"doi\":\"10.52825/bis.v1i.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Process mining is widely adopted in organizations to gain deep insights about running business processes. This can be achieved by applying different process mining techniques like discovery, conformance checking, and performance analysis. These techniques are applied on event logs, which need to be extracted from the organization’s databases beforehand. This not only implies access to databases, but also detailed knowledge about the database schema, which is often not available. In many real-world scenarios, however, process execution data is available as redo logs. Such logs are used to bring a database into a consistent state in case of a system failure. This paper proposes a semi-automatic approach to extract an event log from redo logs alone. It does not require access to the database or knowledge of the databaseschema. The feasibility of the proposed approach is evaluated on two synthetic redo logs.\",\"PeriodicalId\":56020,\"journal\":{\"name\":\"Business & Information Systems Engineering\",\"volume\":\"163 1\",\"pages\":\"73-82\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Business & Information Systems Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.52825/bis.v1i.66\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Business & Information Systems Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.52825/bis.v1i.66","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

流程挖掘在组织中被广泛采用,以获得关于运行业务流程的深入见解。这可以通过应用不同的流程挖掘技术(如发现、一致性检查和性能分析)来实现。这些技术应用于事件日志,需要事先从组织的数据库中提取事件日志。这不仅意味着对数据库的访问,还意味着对数据库模式的详细了解,而这些通常是无法获得的。然而,在许多实际场景中,进程执行数据作为重做日志可用。这些日志用于在系统发生故障时使数据库保持一致状态。本文提出了一种半自动的从重做日志中提取事件日志的方法。它不需要访问数据库或了解数据库模式。在两个合成重做日志上对该方法的可行性进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Database-Less Extraction of Event Logs from Redo Logs
Process mining is widely adopted in organizations to gain deep insights about running business processes. This can be achieved by applying different process mining techniques like discovery, conformance checking, and performance analysis. These techniques are applied on event logs, which need to be extracted from the organization’s databases beforehand. This not only implies access to databases, but also detailed knowledge about the database schema, which is often not available. In many real-world scenarios, however, process execution data is available as redo logs. Such logs are used to bring a database into a consistent state in case of a system failure. This paper proposes a semi-automatic approach to extract an event log from redo logs alone. It does not require access to the database or knowledge of the databaseschema. The feasibility of the proposed approach is evaluated on two synthetic redo logs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Business & Information Systems Engineering
Business & Information Systems Engineering Computer Science-Information Systems
CiteScore
13.60
自引率
7.60%
发文量
44
审稿时长
3 months
期刊介绍: Business & Information Systems Engineering (BISE) is a double-blind peer-reviewed journal with a primary focus on the design and utilization of information systems for social welfare. The journal aims to contribute to the understanding and advancement of information systems in ways that benefit societal well-being.
期刊最新文献
The Design of Citizen-Centric Green IS in Sustainable Smart Districts A Maturity Model for Assessing the Digitalization of Public Health Agencies IT Professionals in the Gig Economy A Reference System Architecture with Data Sovereignty for Human-Centric Data Ecosystems Analyzing Medical Data with Process Mining: a COVID-19 Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1