{"title":"橡胶增韧阻燃(FR)聚酰胺11纳米复合材料第1部分:SEBS-g-MA弹性体和纳米粘土的作用","authors":"Hao Wu, R. Ortiz, J. Koo","doi":"10.1515/flret-2018-0003","DOIUrl":null,"url":null,"abstract":"Abstract The objective of this research is to develop a multifunctional polyamide 11 (PA11) with balanced thermal, mechanical, and flammability properties for SLS. In this study, two sets of formulations were prepared by twin-screw extrusion: the first set examined the effect of maleic anhydride modified elastomers on flammability and the mechanical properties, whereas the second set added various amount of nanoclay and discussed thermal stability, flammability and mechanical properties. The addition of 20 wt.% elastomer brought the elongation at break up to 40%. Reduction in heat release capacity as high as 49% was achieved, all nanocomposite samples passed UL 94 V-1 rating. The addition of nanoclay improved the tensile modulus by up to 78%, the elongation at break for all the formulations were negatively affected by the addition of flame retardant and nanoclay.","PeriodicalId":12171,"journal":{"name":"Flame Retardancy and Thermal Stability of Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Rubber toughened flame retardant (FR) polyamide 11 nanocomposites Part 1: the effect of SEBS-g-MA elastomer and nanoclay\",\"authors\":\"Hao Wu, R. Ortiz, J. Koo\",\"doi\":\"10.1515/flret-2018-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The objective of this research is to develop a multifunctional polyamide 11 (PA11) with balanced thermal, mechanical, and flammability properties for SLS. In this study, two sets of formulations were prepared by twin-screw extrusion: the first set examined the effect of maleic anhydride modified elastomers on flammability and the mechanical properties, whereas the second set added various amount of nanoclay and discussed thermal stability, flammability and mechanical properties. The addition of 20 wt.% elastomer brought the elongation at break up to 40%. Reduction in heat release capacity as high as 49% was achieved, all nanocomposite samples passed UL 94 V-1 rating. The addition of nanoclay improved the tensile modulus by up to 78%, the elongation at break for all the formulations were negatively affected by the addition of flame retardant and nanoclay.\",\"PeriodicalId\":12171,\"journal\":{\"name\":\"Flame Retardancy and Thermal Stability of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flame Retardancy and Thermal Stability of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/flret-2018-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flame Retardancy and Thermal Stability of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/flret-2018-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rubber toughened flame retardant (FR) polyamide 11 nanocomposites Part 1: the effect of SEBS-g-MA elastomer and nanoclay
Abstract The objective of this research is to develop a multifunctional polyamide 11 (PA11) with balanced thermal, mechanical, and flammability properties for SLS. In this study, two sets of formulations were prepared by twin-screw extrusion: the first set examined the effect of maleic anhydride modified elastomers on flammability and the mechanical properties, whereas the second set added various amount of nanoclay and discussed thermal stability, flammability and mechanical properties. The addition of 20 wt.% elastomer brought the elongation at break up to 40%. Reduction in heat release capacity as high as 49% was achieved, all nanocomposite samples passed UL 94 V-1 rating. The addition of nanoclay improved the tensile modulus by up to 78%, the elongation at break for all the formulations were negatively affected by the addition of flame retardant and nanoclay.