{"title":"热敏聚合物刷的中尺度计算机模拟","authors":"D. Yaremchuk, O. Kalyuzhnyi, J. Ilnytskyi","doi":"10.5488/CMP.26.33302","DOIUrl":null,"url":null,"abstract":"We consider a functional surface comprising thermoresponsive polymer chains, the material that has found numerous technological and biomedical applications. However, to achieve the required time and length scales for computer modelling of such applications, one is compelled to use coarse-grained mesoscopic modelling approaches. The model used here is based on the previous work [Soto-Figueroa et al., Soft Matter, 8, 1871 (2012)], and it mimics the principal feature of the poly(N-iso-propylacrylamide) (PNIPAM), namely, the rapid change of its hydrophilicity at the lower critical solution temperature (LCST). For the case of an isolated chain, we discuss scaling properties of the radius of gyration, end-to-end distance, various distribution functions, and the density profile of monomers below and above the LCST. For the case of the model thermoresposive brush, we search for the optimum grafting density at which the change in the brush height, upon crossing the LCST, reaches its maximum value. The interpretation of the thermoresponse, in terms of the Alexander-de Gennes blobs and the level of solvation of polymer chains in a brush, is provided.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"10 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling thermoresponsive polymer brush by mesoscale computer simulations\",\"authors\":\"D. Yaremchuk, O. Kalyuzhnyi, J. Ilnytskyi\",\"doi\":\"10.5488/CMP.26.33302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a functional surface comprising thermoresponsive polymer chains, the material that has found numerous technological and biomedical applications. However, to achieve the required time and length scales for computer modelling of such applications, one is compelled to use coarse-grained mesoscopic modelling approaches. The model used here is based on the previous work [Soto-Figueroa et al., Soft Matter, 8, 1871 (2012)], and it mimics the principal feature of the poly(N-iso-propylacrylamide) (PNIPAM), namely, the rapid change of its hydrophilicity at the lower critical solution temperature (LCST). For the case of an isolated chain, we discuss scaling properties of the radius of gyration, end-to-end distance, various distribution functions, and the density profile of monomers below and above the LCST. For the case of the model thermoresposive brush, we search for the optimum grafting density at which the change in the brush height, upon crossing the LCST, reaches its maximum value. The interpretation of the thermoresponse, in terms of the Alexander-de Gennes blobs and the level of solvation of polymer chains in a brush, is provided.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.26.33302\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.26.33302","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 1
摘要
我们考虑一个包含热敏聚合物链的功能表面,这种材料已经发现了许多技术和生物医学应用。然而,为了达到计算机模拟此类应用所需的时间和长度尺度,人们不得不使用粗粒度的介观建模方法。本文使用的模型基于先前的工作[Soto-Figueroa et al., Soft Matter, 8,1871(2012)],它模拟了聚n -异丙基丙烯胺(PNIPAM)的主要特征,即在较低临界溶液温度(LCST)下其亲水性的快速变化。在孤立链的情况下,我们讨论了旋转半径、端到端距离、各种分布函数和单体密度分布的标度性质。对于模型热响应电刷,我们寻找最佳接枝密度,使电刷高度的变化在穿过LCST时达到最大值。热响应的解释,在亚历山大-德热讷blobs和聚合物链的溶剂化水平的刷子,提供。
Modelling thermoresponsive polymer brush by mesoscale computer simulations
We consider a functional surface comprising thermoresponsive polymer chains, the material that has found numerous technological and biomedical applications. However, to achieve the required time and length scales for computer modelling of such applications, one is compelled to use coarse-grained mesoscopic modelling approaches. The model used here is based on the previous work [Soto-Figueroa et al., Soft Matter, 8, 1871 (2012)], and it mimics the principal feature of the poly(N-iso-propylacrylamide) (PNIPAM), namely, the rapid change of its hydrophilicity at the lower critical solution temperature (LCST). For the case of an isolated chain, we discuss scaling properties of the radius of gyration, end-to-end distance, various distribution functions, and the density profile of monomers below and above the LCST. For the case of the model thermoresposive brush, we search for the optimum grafting density at which the change in the brush height, upon crossing the LCST, reaches its maximum value. The interpretation of the thermoresponse, in terms of the Alexander-de Gennes blobs and the level of solvation of polymer chains in a brush, is provided.
期刊介绍:
Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.