Yawei Yu, Jian-hua Zhang, M. Shafi, Min Zhang, J. Mirza
{"title":"中国和新西兰室外到室内场景下三维MIMO信道测量的统计特征","authors":"Yawei Yu, Jian-hua Zhang, M. Shafi, Min Zhang, J. Mirza","doi":"10.1155/2016/1317489","DOIUrl":null,"url":null,"abstract":"The 3-dimensional (3D) channel model gives a better understanding of statistical characteristics for practical channels than the 2-dimensional (2D) channel model, by taking the elevation domain into consideration. As different organizations and researchers have agreed to a standard 3D channel model, we attempt to measure the 3D channel and determine the parameters of the standard model. In this paper, we present the statistical propagation results of the 3D multiple-input and multiple-output (MIMO) channel measurement campaign performed in China and New Zealand (NZ). The measurements are done for an outdoor-to-indoor (O2I) urban scenario. The dense indoor terminals at different floors in a building form a typical 3D propagation environment. The key parameters of the channel are estimated from the measured channel impulse response (CIR) using the spatial-alternating generalized expectation-maximization (SAGE) algorithm. Till now there is abundant research performed on the azimuth domain; this paper mainly considers the statistical characteristics of the elevation domain. A statistical analysis of 3D MIMO channel results for both China and NZ measurements is presented for the following parameters: power delay profile (PDP), root mean square (rms), delay spread (DS), elevation angle-of-arrival (EAoA) distribution, elevation angle-of-departure (EAoD) distribution, elevation angular spread (AS), and cross-polarization discrimination (XPD).","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"22 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Statistical Characteristics of Measured 3-Dimensional MIMO Channel for Outdoor-to-Indoor Scenario in China and New Zealand\",\"authors\":\"Yawei Yu, Jian-hua Zhang, M. Shafi, Min Zhang, J. Mirza\",\"doi\":\"10.1155/2016/1317489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 3-dimensional (3D) channel model gives a better understanding of statistical characteristics for practical channels than the 2-dimensional (2D) channel model, by taking the elevation domain into consideration. As different organizations and researchers have agreed to a standard 3D channel model, we attempt to measure the 3D channel and determine the parameters of the standard model. In this paper, we present the statistical propagation results of the 3D multiple-input and multiple-output (MIMO) channel measurement campaign performed in China and New Zealand (NZ). The measurements are done for an outdoor-to-indoor (O2I) urban scenario. The dense indoor terminals at different floors in a building form a typical 3D propagation environment. The key parameters of the channel are estimated from the measured channel impulse response (CIR) using the spatial-alternating generalized expectation-maximization (SAGE) algorithm. Till now there is abundant research performed on the azimuth domain; this paper mainly considers the statistical characteristics of the elevation domain. A statistical analysis of 3D MIMO channel results for both China and NZ measurements is presented for the following parameters: power delay profile (PDP), root mean square (rms), delay spread (DS), elevation angle-of-arrival (EAoA) distribution, elevation angle-of-departure (EAoD) distribution, elevation angular spread (AS), and cross-polarization discrimination (XPD).\",\"PeriodicalId\":31263,\"journal\":{\"name\":\"工程设计学报\",\"volume\":\"22 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"工程设计学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/1317489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2016/1317489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Statistical Characteristics of Measured 3-Dimensional MIMO Channel for Outdoor-to-Indoor Scenario in China and New Zealand
The 3-dimensional (3D) channel model gives a better understanding of statistical characteristics for practical channels than the 2-dimensional (2D) channel model, by taking the elevation domain into consideration. As different organizations and researchers have agreed to a standard 3D channel model, we attempt to measure the 3D channel and determine the parameters of the standard model. In this paper, we present the statistical propagation results of the 3D multiple-input and multiple-output (MIMO) channel measurement campaign performed in China and New Zealand (NZ). The measurements are done for an outdoor-to-indoor (O2I) urban scenario. The dense indoor terminals at different floors in a building form a typical 3D propagation environment. The key parameters of the channel are estimated from the measured channel impulse response (CIR) using the spatial-alternating generalized expectation-maximization (SAGE) algorithm. Till now there is abundant research performed on the azimuth domain; this paper mainly considers the statistical characteristics of the elevation domain. A statistical analysis of 3D MIMO channel results for both China and NZ measurements is presented for the following parameters: power delay profile (PDP), root mean square (rms), delay spread (DS), elevation angle-of-arrival (EAoA) distribution, elevation angle-of-departure (EAoD) distribution, elevation angular spread (AS), and cross-polarization discrimination (XPD).
期刊介绍:
Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.