可转移深度学习辅助射频指纹识别系统的探索

Junqing Zhang, Guanxiong Shen
{"title":"可转移深度学习辅助射频指纹识别系统的探索","authors":"Junqing Zhang, Guanxiong Shen","doi":"10.1051/sands/2023019","DOIUrl":null,"url":null,"abstract":"Radio frequency fingerprint identification (RFFI) shows great potential as a means for authenticating wireless devices. As RFFI can be addressed as a classification problem, deep learning techniques are widely utilized in modern RFFI systems for their outstanding performance. RFFI is suitable for securing the legacy existing Internet of Things (IoT) networks since it does not require any modifications to the existing end-node hardware and communication protocols. However, most deep learning-based RFFI systems require the collection of a great number of labelled signals for training, which is time-consuming and not ideal, especially for the IoT end nodes that are already deployed and configured with long transmission intervals. Moreover, the long time required to train a neural network from scratch also limits rapid deployment on legacy IoT networks. To address the above issues, two transferable RFFI protocols are proposed in this paper leveraging the concept of transfer learning. More specifically, they rely on fine-tuning and distance metric learning, respectively, and only require only a small amount of signals from the legacy IoT network. As the dataset used for transfer is small, we propose to apply augmentation in the transfer process to generate more training signals to improve performance. A LoRa-RFFI testbed consisting of 40 commercial-off-the-shelf (COTS) LoRa IoT devices and a software-defined radio (SDR) receiver is built to experimentally evaluate the proposed approaches. The experimental results demonstrate that both the fine-tuning and distance metric learning-based RFFI approaches can be rapidly transferred to another IoT network with less than ten signals from each LoRa device. The classification accuracy is over 90%, and the augmentation technique can improve the accuracy by up to 20%.","PeriodicalId":79641,"journal":{"name":"Hospital security and safety management","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of Transferable Deep Learning-Aided Radio Frequency Fingerprint Identification Systems\",\"authors\":\"Junqing Zhang, Guanxiong Shen\",\"doi\":\"10.1051/sands/2023019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio frequency fingerprint identification (RFFI) shows great potential as a means for authenticating wireless devices. As RFFI can be addressed as a classification problem, deep learning techniques are widely utilized in modern RFFI systems for their outstanding performance. RFFI is suitable for securing the legacy existing Internet of Things (IoT) networks since it does not require any modifications to the existing end-node hardware and communication protocols. However, most deep learning-based RFFI systems require the collection of a great number of labelled signals for training, which is time-consuming and not ideal, especially for the IoT end nodes that are already deployed and configured with long transmission intervals. Moreover, the long time required to train a neural network from scratch also limits rapid deployment on legacy IoT networks. To address the above issues, two transferable RFFI protocols are proposed in this paper leveraging the concept of transfer learning. More specifically, they rely on fine-tuning and distance metric learning, respectively, and only require only a small amount of signals from the legacy IoT network. As the dataset used for transfer is small, we propose to apply augmentation in the transfer process to generate more training signals to improve performance. A LoRa-RFFI testbed consisting of 40 commercial-off-the-shelf (COTS) LoRa IoT devices and a software-defined radio (SDR) receiver is built to experimentally evaluate the proposed approaches. The experimental results demonstrate that both the fine-tuning and distance metric learning-based RFFI approaches can be rapidly transferred to another IoT network with less than ten signals from each LoRa device. The classification accuracy is over 90%, and the augmentation technique can improve the accuracy by up to 20%.\",\"PeriodicalId\":79641,\"journal\":{\"name\":\"Hospital security and safety management\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hospital security and safety management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/sands/2023019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hospital security and safety management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/sands/2023019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

射频指纹识别(RFFI)作为一种验证无线设备的手段显示出巨大的潜力。由于RFFI可以作为一个分类问题来解决,深度学习技术因其优异的性能被广泛应用于现代RFFI系统中。RFFI适用于保护现有的传统物联网(IoT)网络,因为它不需要对现有的终端节点硬件和通信协议进行任何修改。然而,大多数基于深度学习的RFFI系统需要收集大量标记信号进行训练,这既耗时又不理想,特别是对于已经部署并配置了较长传输间隔的物联网终端节点。此外,从头开始训练神经网络所需的长时间也限制了在传统物联网网络上的快速部署。为了解决上述问题,本文利用迁移学习的概念提出了两个可转移的RFFI协议。更具体地说,它们分别依赖于微调和距离度量学习,并且只需要来自传统物联网网络的少量信号。由于用于传输的数据集较小,我们建议在传输过程中应用增强来产生更多的训练信号以提高性能。建立了一个由40个商用现货(COTS) LoRa物联网设备和一个软件定义无线电(SDR)接收器组成的LoRa- rffi测试平台,以实验评估所提出的方法。实验结果表明,微调和基于距离度量学习的RFFI方法都可以快速转移到另一个物联网网络,每个LoRa设备的信号少于10个。分类准确率在90%以上,增强技术可使分类准确率提高20%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploration of Transferable Deep Learning-Aided Radio Frequency Fingerprint Identification Systems
Radio frequency fingerprint identification (RFFI) shows great potential as a means for authenticating wireless devices. As RFFI can be addressed as a classification problem, deep learning techniques are widely utilized in modern RFFI systems for their outstanding performance. RFFI is suitable for securing the legacy existing Internet of Things (IoT) networks since it does not require any modifications to the existing end-node hardware and communication protocols. However, most deep learning-based RFFI systems require the collection of a great number of labelled signals for training, which is time-consuming and not ideal, especially for the IoT end nodes that are already deployed and configured with long transmission intervals. Moreover, the long time required to train a neural network from scratch also limits rapid deployment on legacy IoT networks. To address the above issues, two transferable RFFI protocols are proposed in this paper leveraging the concept of transfer learning. More specifically, they rely on fine-tuning and distance metric learning, respectively, and only require only a small amount of signals from the legacy IoT network. As the dataset used for transfer is small, we propose to apply augmentation in the transfer process to generate more training signals to improve performance. A LoRa-RFFI testbed consisting of 40 commercial-off-the-shelf (COTS) LoRa IoT devices and a software-defined radio (SDR) receiver is built to experimentally evaluate the proposed approaches. The experimental results demonstrate that both the fine-tuning and distance metric learning-based RFFI approaches can be rapidly transferred to another IoT network with less than ten signals from each LoRa device. The classification accuracy is over 90%, and the augmentation technique can improve the accuracy by up to 20%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface: Security and Safety in Unmanned Systems Optimization for UAV-Assisted Simultaneous Transmission and Reception Communications in the Existence of Malicious Jammers Enabling Space-Air Integration: A Satellite-UAV Networking Authentication Scheme Adaptive Cooperative Secure Control of Networked Multiple Unmanned Systems under FDI Attacks Optimal DoS Attack on Multi-Channel Cyber-Physical Systems: A Stackelberg Game Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1