用相关的正反例对标签相关性进行分类

Xirong Li, Cees G. M. Snoek
{"title":"用相关的正反例对标签相关性进行分类","authors":"Xirong Li, Cees G. M. Snoek","doi":"10.1145/2502081.2502129","DOIUrl":null,"url":null,"abstract":"Image tag relevance estimation aims to automatically determine what people label about images is factually present in the pictorial content. Different from previous works, which either use only positive examples of a given tag or use positive and random negative examples, we argue the importance of relevant positive and relevant negative examples for tag relevance estimation. We propose a system that selects positive and negative examples, deemed most relevant with respect to the given tag from crowd-annotated images. While applying models for many tags could be cumbersome, our system trains efficient ensembles of Support Vector Machines per tag, enabling fast classification. Experiments on two benchmark sets show that the proposed system compares favorably against five present day methods. Given extracted visual features, for each image our system can process up to 3,787 tags per second. The new system is both effective and efficient for tag relevance estimation.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Classifying tag relevance with relevant positive and negative examples\",\"authors\":\"Xirong Li, Cees G. M. Snoek\",\"doi\":\"10.1145/2502081.2502129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image tag relevance estimation aims to automatically determine what people label about images is factually present in the pictorial content. Different from previous works, which either use only positive examples of a given tag or use positive and random negative examples, we argue the importance of relevant positive and relevant negative examples for tag relevance estimation. We propose a system that selects positive and negative examples, deemed most relevant with respect to the given tag from crowd-annotated images. While applying models for many tags could be cumbersome, our system trains efficient ensembles of Support Vector Machines per tag, enabling fast classification. Experiments on two benchmark sets show that the proposed system compares favorably against five present day methods. Given extracted visual features, for each image our system can process up to 3,787 tags per second. The new system is both effective and efficient for tag relevance estimation.\",\"PeriodicalId\":20448,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2502081.2502129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

图像标签相关性估计的目的是自动确定人们对图像所标记的内容是否真实存在于图像内容中。与以往只使用给定标签的正例或使用正例和随机负例不同,我们认为相关的正例和相关的负例对于标签相关性估计的重要性。我们提出了一个系统,从人群注释图像中选择被认为与给定标签最相关的正面和负面示例。虽然对许多标签应用模型可能很麻烦,但我们的系统可以为每个标签训练有效的支持向量机集合,从而实现快速分类。在两个基准集上的实验表明,该系统优于现有的五种方法。给定提取的视觉特征,对于每张图像,我们的系统每秒可以处理多达3,787个标签。该系统对标签相关性的估计是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classifying tag relevance with relevant positive and negative examples
Image tag relevance estimation aims to automatically determine what people label about images is factually present in the pictorial content. Different from previous works, which either use only positive examples of a given tag or use positive and random negative examples, we argue the importance of relevant positive and relevant negative examples for tag relevance estimation. We propose a system that selects positive and negative examples, deemed most relevant with respect to the given tag from crowd-annotated images. While applying models for many tags could be cumbersome, our system trains efficient ensembles of Support Vector Machines per tag, enabling fast classification. Experiments on two benchmark sets show that the proposed system compares favorably against five present day methods. Given extracted visual features, for each image our system can process up to 3,787 tags per second. The new system is both effective and efficient for tag relevance estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Summary abstract for the 1st ACM international workshop on personal data meets distributed multimedia πLDA: document clustering with selective structural constraints Massive-scale multimedia semantic modeling OTMedia: the French TransMedia news observatory Orchestration: tv-like mixing grammars applied to video-communication for social groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1